Penman Documentation
Release v0.7.2

Michael Wayne Goodman

Dec 12, 2019

10

11

12

CONTENTS:

Installation and Setup

1.1 Requirements o v it et e e e e e e e e e e e e e e e e e
1.2 Installation L e e e e e e e
1.3 TeSting . . o o v o o e e e e e e e e e e
Basic Usage

2.1 UsingPenmanasaTool e
2.2 UsingPenmanasalibrary. e
PENMAN Notation

Trees, Graphs, and Epigraphs

Notes on Serialization
5.1 Allowed Graphs o . e e e e e e e e e

penman

6.1 Submodules e e
6.2 Module ConStants i i e e e e e e e e e e e e e e
6.3 ClaSSES . . . v v ot e e e e e e e e e e e e e e e e
6.4 Module Functions e e e e e
6.5 EXCeptions e e e

penman.codec
penman.epigraph
penman.exceptions
penman.graph

penman.interface
11.1 Graph-reading Functions 0 i e e e e e e e
11.2 Graph-writing Functions e

penman.layout

12.1 Epigraphical Markers e e
122 Tree Functions e e
12.3 Graph Functions e e e e e e
12.4 Diagnostic Functions oL e

FNLUSERUS I JS)

[V 00]

11
11

13
13
14
14
14
14

15

17

19

21

23
23
24

13

14

15

16

17

18

19

penman.lexer

13.1 Module Constants v v i v i e e e e e e e e e e e e e e
13.2 Module Functions e e e e e
133 CIaSSES . . . v v o e i e e e e e e e e

penman.model

penman.models
15.1 Available Models e e e e e e e e

penman.surface
16.1 Epigraphical Markers
162 Module Functions L e e e e e

penman.transform
penman.tree

Indices and tables

Bibliography

Python Module Index

Index

29
29
29
29

31

33
33

35
35
35

37

41

43

45

47

49

Penman Documentation, Release v0.7.2

The Penman package is a library for working with graphs in the PENMAN format. Its primary job is thus parsing the
serialized form into an internal graph representation and format graphs into the serialized form again. Once parsed,
the graphs can be inspected and manipulated, depending on one’s needs.

The interpretation of PENMAN into the internal graph depends on a semantic model. The default mode 1 works in
most cases, but for people working with Abstract Meaning Representation (AMR) data, the AMR mode 1 will allow
them to perform operations in a way that follows the principles of AMR. Users may also define custom models if they
need more control.

CONTENTS: 1

https://amr.isi.edu/

Penman Documentation, Release v0.7.2

2 CONTENTS:

CHAPTER
ONE

INSTALLATION AND SETUP

Penman releases are available on PyPI and the source code is on GitHub. Users of Penman will probably want to
install from PyPI using pip as it is the easiest method and it makes the penman command available at the command
line. Developers and contributors of Penman will probably want to install from the source code.

1.1 Requirements

The Penman package runs with Python 3.6 and higher versions, but otherwise it has no dependencies beyond Python’s
standard library.

Some development tasks, such as unit testing, building the documentation, or making releases, have additional depen-
dencies. See Installing from Source for more information.

1.2 Installation

1.2.1 Installing from PyPI

Install the latest version from PyPI using pip (using a virtual environment is recommended):

$ pip install penman

After running the above command, the penman module will be available in Python and the penman command will
be available at the command line.

1.2.2 Installing from Source
Developers and contributors of the Penman project may wish to install from the source code using one of several
“extras”, which are given in brackets after the package name. The available extras are:

* test —install dependencies for unit testing

* doc —install dependencies for building the documentation

* dev —install dependencies for both of the above plus those needed for publishing releases

When installing from source code, the —e option is also useful as any changes made to the source code after the install
will be reflected at runtime (otherwise one needs to reinstall after any changes). The following is how one might clone
the source code, create and activate a virtual environment, and install for development:

https://pypi.org/project/Penman/
https://github.com/goodmami/penman/
https://pypi.org/project/Penman/
https://www.python.org/
https://pypi.org/project/Penman/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Penman Documentation, Release v0.7.2

$ git clone https://github.com/goodmami/penman.git
[...]

$ cd penman/

$ python3 -m venv env

$ source env/bin/activate

(env) $ pip install -e . [dev]

1.3 Testing

1.3.1 Unit Testing with pytest

The unit tests can be run with pytest from the project directory of the source code:

(env) $ pytest

For testing multiple Python versions, a tool like tox can automate the creation and activation of multiple virtual
environments.

1.3.2 Type-checking with Mypy

The Penman project heavily uses PEP 484 and PEP 526 type annotations for static type checking. The code can be
type-checked using Mypy:

(env) $ mypy penman

1.3.3 Style-checking with Flake8

Flake8 is used for style checking with the following checks disabled:
* E241 — large data descriptions are easier to read with whitespace

* W503 — binary operators should appear after a line break

(env) $ flake8 —--ignore=E241,W503 penman

4 Chapter 1. Installation and Setup

http://pytest.org/
https://tox.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
http://mypy-lang.org/
http://flake8.pycqa.org/
https://lintlyci.github.io/Flake8Rules/rules/E241.html
https://lintlyci.github.io/Flake8Rules/rules/W503.html

CHAPTER
TWO

BASIC USAGE

This document will give an overview of how to use Penman as a tool and as a library. For motivation, here’s an
example of its tool usage:

$ penman —--indent 3 —-compact <<< '(s / sleep :polarity - :ARGO (i / 1))
(s / sleep :polarity -
:ARGO (1 / 1))

And here’s an example of its library usage:

>>> from penman import PENMANCodec
>>> codec = PENMANCodec ()
>>> g = codec.decode (' (s / sleep-01 :polarity — :ARGO (i / 1))")
>>> g.triples.remove(('s', ':polarity', '-'))
>>> print (PENMANCodec () .encode (g))
(s / sleep-01
:ARGO (i / 1))

2.1 Using Penman as a Tool

Once installed (see Installation and Setup), the penman command becomes available. It allows you to perform some
basic tasks with PENMAN graphs without having to write any Python code. Run penman —--help to get a synposis
of its usage:

$ penman —--help

usage: penman [-h] [-V] [-v] [-g] [-—model FILE | —-—amr] [—-—indent N]
[-—compact] [-—-triples] [--rearrange KEY] [-—-canonicalize-roles]
[--reify-edges] [--reify-attributes] [--indicate-branches]

[FILE [FILE ...]]

Read and write graphs in the PENMAN notation.

positional arguments:
FILE read graphs from FILEs instead of stdin

optional arguments:

-h, —--help show this help message and exit

-V, ——-version show program's version number and exit

-v, ——-verbose increase verbosity

-g, ——quiet suppress output on <stdout> and <stderr>
—-—-model FILE JSON model file describing the semantic model
——amr use the AMR model

(continues on next page)

Penman Documentation, Release v0.7.2

(continued from previous page)

formatting options:

——indent N indent N spaces per level ("no" for no newlines)
——compact compactly print node attributes on one line
—-—triples print graphs as triple conjunctions

normalization options:

——rearrange KEY sort or randomize the order of relations on each node
——canonicalize-roles canonicalize role forms

-—-reify-edges reify all eligible edges

—--reify-attributes reify all attributes

——indicate-branches insert triples to indicate tree structure

The penman command can read input from stdin or from one or more files. Currently it always outputs to stdout.
Options are available to customize the formatting of the output, such as for controlling indentation. Normalization
options allow one to transform the graph in predefined ways prior to serialization. For example:

$ penman —--amr —--indent=3 —--reify-edges <<< '(a / apple :quant 3)'
(a / apple
:ARGl-of (_ / have-quant-91
:ARG2 3))

2.2 Using Penman as a Library

While the command-line utility is convenient, it does not expose all the functionality that the Penman package has.
For more sophisticated uses, the API allows one to directly inspect trees and graphs, construct and manipulate trees
and graphs, further customize serialization, interface with other systems, etc.

For example:

>>> from penman import PENMANCodec
>>> codec = PENMANCodec ()
>>> g = codec.decode(' (b / bark-01 :ARGO (d / dog))"')
>>> g.attributes ()
[Attribute (source="'b', role=':instance', target='bark-01'), Attribute (source='d',
—role=':instance', target='dog')]
>>> g.edges ()
[Edge (source="b', role=':ARGO', target='d')]
>>> g.variables ()
{'da', 'b'}
>>> print (codec.encode (g, top='d'))
(d / dog
:ARGO-0of (b / bark-01))
>>> g.triples.append(('b', ':polarity', '-"))
>>> print (codec.encode (g))
(b / bark-01
:ARGO (d / dog)
:polarity -)

Importing directly from the penman module allows for basic usage of the library, but anything more advanced can
take advantage of the full API. See the API documentation for more information.

6 Chapter 2. Basic Usage

CHAPTER
THREE

PENMAN NOTATION

PENMAN notation, originally called Sentence Plan Notation in the PENMAN project ((KAS1989]), is a serialization
format for the directed, rooted graphs used to encode semantic dependencies, most notably in the Abstract Meaning
Representation (AMR) framework. It looks similar to Lisp’s S-Expressions in using parentheses to indicate nested
structures. For example, here is an AMR for “He drives carelessly.”:

(d / drive-01
:ARGO (h / he)
:manner (c / care-04
:polarity -))

Let’s break that down a bit:

; Variable (this one is the graph's top)
; Indicates the node's concept
; | Concept (node label)

(d / drive-01
; Edge relation

:ARGO (h / he)

; I Role (edge label)
:manner (c / care—04
; —— Attribute relation
; -
:polarity -))
; L Atom (or "constant")

The linearized form can only describe projective structures such as trees, so in order to capture non-projective graphs,
nodes get identifiers (called variables; e.g., d, h, and c above) which can be referred to later to establish a reentrancy.

PENMAN notation can be very roughly described with the following BNF grammar (from [GOO2019]):

<node> ::= ' (' <id> '/' <node-label> <edge>x ')'
<edge> ::= ':'<edge-label> (<const>|<id>|<node>)

A more complete description is given by the following PEG grammar. In addition to being more complete, it also
extends the grammar to allow for surface alignments.

Syntactic productions (whitespace is allowed around non-terminals)
Start <- Node

Node <— '"(' Variable Nodelabel? Relationx* ')'

NodeLabel <- '/' Concept Alignment?

(continues on next page)

https://www.isi.edu/natural-language/penman/penman.html
https://amr.isi.edu/
https://amr.isi.edu/
https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar

Penman Documentation, Release v0.7.2

(continued from previous page)

Concept <- Atom

Relation <- Role Alignment? (Node / Atom Alignment?)
Atom <- Variable / Constant

Constant <- String / Float / Integer / Symbol
Variable <- Symbol

Lexical productions (whitespace is not allowed)

Symbol <- NameChar+

Role <- ':' NameChar=

Alignment <- '~' ([a-zA-Z] '.'?)? Digit+ (',' Digit+)=x
String <= tmrorrmro (NN L/ o))y x '

Float <- Decimal Exponent? / Integer Exponent
Decimal <— [-+]? (Digit+ '.' Digit* / '.' Digit+)
Exponent <- [eE] Integer

Integer <— [-+]7? Digit+

NameChar <- !'[\n\t\r\f\v()/, :~]

Digit <- [0-9]

This grammar has some seemingly unnecessary ambiguity in that both the Variable and Constant alternatives
for Atom can resolve to Symbol, but it is written this way to accommodate syntax variants that further restrict the
form of variables. Also, the distinction between edge relations and attribute relations is semantic: if the target of a
relation is the variable of some other node, then it is an edge, otherwise it is an attribute.

8 Chapter 3. PENMAN Notation

CHAPTER
FOUR

TREES, GRAPHS, AND EPIGRAPHS

On the surface, the structures encoded in PENMAN Notation (see here) are a tree, and only by resolving repeated node
identifiers (variables) as reentrancies does the actual graph become accessible. The Penman library thus accommodates
the three stages of a structure: the linear PENMAN string, the surface t ree, and the pure graph. Going from a string
to a tree is called parsing, and from a tree to a graph is interpretation, while the whole process (string to graph) is
called decoding. Going from a graph to a tree is called configuration, and from a tree to a string is formatting, while
the whole process is called encoding. These processes are illustrated by the following figure:

AR
TARGO-of (g / gamma

:ARG1 b))

Conversion from a PENMAN string to a Tree, and vice versa, is straightforward and lossless. Conversion to a
Graph, however, is potentially lossy as the same graph can be represented by different trees. For example, the graph
in the figure above could be serialized to any of these PENMAN strings:

(a / alpha (a / alpha (a / alpha
:ARGO (b / beta) :ARGO (b / beta :ARGO (b / beta
:ARGO-of (g / gamma :ARGl-of (g / gamma)) :ARGl-of (g / gamma
:ARG1 b)) :ARGO-0of g) :ARGO a)))

Even more serializations are possible if you do not require the first occurrence of a variable to define the node (with
its node label (concept) and outgoing edges), or if you allow other nodes to be the top.

The Penman library therefore introduces the concept of the epigraph (not to be confused with other senses of epigraph,
such as an inscription on a building or a passage at the beginning of a book), which is information on top of the graph
that instructs the codec how the graph should be serialized. The epigraph is thus analagous to the idea of the
epigenome: epigenetic markers controls how genes are expressed in an individual as the epigraphical markers control
how graph triples are expressed in a tree or string. Separating the graph and the epigraph thus allow the graph to be a
pure representation of the triples expressed in a PENMAN serialization without losing information about the surface
form.

There are currently two kinds of epigraphical markers: layout markers and surface alignment markers. Surface align-
ment markers are parsed from the string and stored in the tree then propagated to the graph upon interpretation. Layout
markers are created when the tree is interpreted into a graph. When an edge goes to a new node and not a constant
or variable, a Push marker is inserted. When a node ends, a POP marker is inserted. With these markers, and the
ordering of triples, the graph can be configured to a specific tree structure.

https://en.wikipedia.org/wiki/Epigenome

Penman Documentation, Release v0.7.2

10 Chapter 4. Trees, Graphs, and Epigraphs

CHAPTER
FIVE

NOTES ON SERIALIZATION

A PENMAN-serialized graph takes the form of a tree with labeled reentrancies, so in deserialization it is first parsed
directly into a tree and then the pure graph is interpreted from it.

(b / bark
:ARGO (d / dog))

The above PENMAN string is parsed to the following tree:

Tree(('b', [(':instance', 'bark', [1),
(":ARGO', ('d', [(':instance', 'dog', [1)1), [1)1))

The structure of a tree node is (var, branches) while the structure of a branch is (role, target,

epidata). The target of a branch can be an atomic value or a tree node. The epidata field is a list of epigraph-
ical markers. This tree is then interpreted to the following triples:

Graph (triples=][
('b', ':instance', 'bark'"),
("', '":ARGO', 'd"),
('d', ':instance', 'dog')
]I
epidata={
('b', '":ARGO', 'd'): [Push('d')],
('d'", ':instance', 'dog'): [POP]
1)

Serialization goes in the reverse order: from a pure graph to a tree to a string.

5.1 Allowed Graphs

The Penman library robustly allows some kinds of invalid and unconventional graphs.

Unproblematic:

Normal
(a / a-label :ROLE (b / b-label))

Unlabeled nodes, edges

(a :ROLE (b))

(a / a-label : (b / b-label))
(a (b))

Cycles

(continues on next page)

11

Penman Documentation, Release v0.7.2

(continued from previous page)

(a :ROLE (b :ROLE a))
Distributed nodes
(a :ROLE (b :ROLE (c / c—label)) :ROLE2 (¢ :ATTR val))

Allowed but Unconventional

Empty
0)

Missing edge target
(a / a—-label :ROLE)

Missing node label
(a / :ROLE (b / b-label))

Disallowed

sconnected (parseable as two separate graphs)

Di
(a / a—-label) (b / b-label)

Missing identifiers
(a :ROLE (/ b-label)

Misplaced label
(a :ROLE (b) / a-label)

Multiple labels
(a / a—-label / another-label)

12

Chapter 5. Notes on Serialization

CHAPTER
SIX

PENMAN

Penman graph library.

For basic usage, and to retain some backward compatibility with early versions, some functionality is available from
the top-level penman module. For the rest, please use the standard API available via the submodules.

6.1 Submodules

6.1.1 Data Structures

» penman.epigraph — Base classes for epigraphical markers
» penman.graph — Classes for pure graphs

e penman.model — Class for defining semantic models

e penman.models — Pre-defined models

» penman.surface — Classes for surface alignments

» penman.tree — Classes for trees

6.1.2 Serialization

» penman.codec — Codec class for reading and writing PENMAN data
» penman.layout — Conversion between trees and graphs

» penman.lexer — Low-level parsing of PENMAN data

6.1.3 Other

* penman.exceptions — Exception classes
* penman.interface — Functional interface to a codec

* penman.transform — Graph and tree transformation functions

13

Penman Documentation, Release v0.7.2

6.2 Module Constants

penman.__version_
The software version string.

penman.__version_info_
The software version as a tuple.

6.3 Classes

class penman.Triple
Alias of penman.graph. Triple.

class penman.Graph
Alias of penman.graph.Graph.

class penman.PENMANCodec
Alias of penman. codec.PENMANCodec.

6.4 Module Functions

penman .decode ()
Alias of penman. interface.decode.

penman.loads ()
Alias of penman.interface. loads

penman.load/()
Alias of penman. interface. load.

penman.encode ()
Alias of penman.interface.encode

penman . dumps ()
Alias of penman. interface.dumps.

penman .dump ()
Alias of penman.interface.dump.

6.5 Exceptions

exception penman.PenmanError

Alias of penman.exceptions.PenmanError.

exception penman.DecodeError

Alias of penman.exceptions.DecodeError.

14

Chapter 6. penman

CHAPTER
SEVEN

Serialization of PENMAN graphs.

class penman.codec.PENMANCodec (model=None)
An encoder/decoder for PENMAN:-serialized graphs.

ATOMS = {'FLOAT', 'INTEGER', 'STRING', 'SYMBOL'}
The valid non-node targets of edges.

decode (s, triples=False)
Deserialize PENMAN-notation string s into its Graph object.

Parameters
* s —astring containing a single PENMAN-serialized graph
* triples —if True, parse s as a triple conjunction

Returns The Graph object described by s.

Example

PENMAN.CODEC

>>> codec = PENMANCodec ()

>>> codec.decode (' (b / bark :ARGL (d / dog))")

<Graph object (top=b) at ...>

>>> codec.decode (
'instance (b, bark)
triples=True

A

o)
<Graph object (top=b) at ...>

instance (d, dog) ~ ARGl (b, d)',

iterdecode (lines, triples=False)
Yield graphs parsed from lines.

Parameters
* lines — a string or open file with PENMAN-serialized graphs
* triples —if True, parse s as a triple conjunction

Returns The Graph objects described in lines.

parse (s)
Parse PENMAN-notation string s into its tree structure.

Parameters s — a string containing a single PENMAN-serialized graph

Returns The tree structure described by s.

15

Penman Documentation, Release v0.7.2

Example

>>> codec = PENMANCodec ()
>>> codec.parse (' (b / bark :ARGl (d / dog))") # noga

Tree(('b', [('/', 'bark', []), ('ARGL', ('d', [('/', 'dog', [])]

parse_triples (s)
Parse a triple conjunction from s.

encode (g, top=None, triples=False, indent=-1, compact=False)
Serialize the graph g into PENMAN notation.

Parameters
* g — the Graph object
* top —if given, the node to use as the top in serialization
e triples —if True, serialize as a conjunction of triples
* indent — how to indent formatted strings
e compact —if True, put initial attributes on the first line

Returns the PENMAN:-serialized string of the Graph g

Example

>>> codec = PENMANCodec ()

>>> codec.encode (Graph ([('h', '"instance', 'hi')]))
(h / hi)
>>> codec.encode (Graph ([('h', 'instance', 'hi')]),

triples=True)

instance (h, hi)

format (tree, indent=-1, compact=False)
Format tree into a PENMAN string.

format_triples (triples, indent=True)
Return the formatted triple conjunction of triples.

Parameters
e triples - an iterable of triples
e indent — how to indent formatted strings

Returns the serialized triple conjunction of triples

Example

>>> codec = PENMANCodec ()

>>> codec.format_triples([('a', ':instance', 'alpha'),
('a', '":ARGO', 'b"),
('"b', ':instance', 'beta')l)

'instance (a, alpha) ~\nARGO (a, b) "\ninstance (b, beta)'

16

Chapter 7

. penman.codec

CHAPTER
EIGHT

Base classes for epigraphical markers.

class penman.epigraph.Epidatum

mode = 0

The mode attribute specifies what the Epidatum annotates:

* mode=0 — unspecified
* mode=1 —role epidata

* mode=2 — target epidata

PENMAN.EPIGRAPH

17

Penman Documentation, Release v0.7.2

18 Chapter 8. penman.epigraph

CHAPTER
NINE

PENMAN.EXCEPTIONS

exception penman.exceptions.PenmanError
Base class for errors in the Penman package.

exception penman.exceptions.GraphError
Bases: penman.exceptions.PenmanError

Raises on invalid graph structures or operations.

exception penman.exceptions.LayoutError
Bases: penman.exceptions.PenmanError

Raised on invalid graph layouts.

exception penman.exceptions.DecodeError (message=None, filename=None, lineno=None, off-

set=None, text=None)
Bases: penman.exceptions.PenmanError

Raised on PENMAN syntax errors.

exception penman.exceptions.SurfaceError
Bases: penman.exceptions.PenmanError

Raised on invalid surface information.

exception penman.exceptions.ModelError
Bases: penman.exceptions.PenmanError

Raised when a graph violates model constraints.

19

Penman Documentation, Release v0.7.2

20

Chapter 9. penman.exceptions

CHAPTER
TEN

PENMAN.GRAPH

Data structures for Penman graphs and triples.

class penman.graph.Graph (triples=None, top=None, epidata=None, metadata=None)
A basic class for modeling a rooted, directed acyclic graph.

A Graph is defined by a list of triples, which can be divided into two parts: a list of graph edges where both the
source and target are variables (node identifiers), and a list of node attributes where only the source is a variable
and the target is a constant. The raw triples are available via the ¢t riples attribute, while the edges () and
attributes () methods return only those that are edges between nodes or between a node and a constant,
respectively.

Parameters
* triples — an iterable of triples (Triple or 3-tuples)
* top - the variable of the top node; if unspecified, the source of the first triple is used
* epidata — a mapping of triples to epigraphical markers

* metadata — a mapping of metadata types to descriptions

Example
>>> Graph([('b', ':instance', 'bark'),
('d', ':instance', 'dog'"),
('b', '":ARGL', 'd")])
top
The top variable.
triples
The list of triples that make up the graph.
epidata
Epigraphical data that describe how a graph is to be expressed when serialized.
metadata
Metadata for the graph.

edges (source=None, role=None, target=None)
Return edges filtered by their source, role, or target.

Edges don’t include terminal triples (concepts or attributes).

attributes (source=None, role=None, target=None)
Return attributes filtered by their source, role, or target.

21

Penman Documentation, Release v0.7.2

Attributes don’t include triples where the target is a nonterminal.

variables ()
Return the set of variables (nonterminal node identifiers).

reentrancies ()
Return a mapping of variables to their re-entrancy count.

A re-entrancy is when more than one edge selects a node as its target. These graphs are rooted, so the top
node always has an implicit entrancy. Only nodes with re-entrancies are reported, and the count is only
for the entrant edges beyond the first. Also note that these counts are for the interpreted graph, not for the
linearized form, so inverted edges are always re-entrant.

class penman.graph.Triple
A relation between nodes or between a node and an constant.

Parameters
* source - the source variable of the triple
* role - the edge label between the source and target
* target — the target variable or constant

source
The source variable of the triple.

role
The edge label between the source and target.

target
The target variable or constant.

class penman.graph.Edge
Bases: penman.graph.Triple

A relation between nodes.

class penman.graph.Attribute
Bases: penman.graph. Triple

A relation between a node and a constant.

22 Chapter 10. penman.graph

CHAPTER
ELEVEN

PENMAN.INTERFACE

Functions for basic reading and writing of PENMAN graphs.

11.1 Graph-reading Functions

penman.interface.decode (s, model=None, triples=False)
Deserialize PENMAN-serialized s into its Graph object

Parameters
* s —a string containing a single PENMAN-serialized graph
* model — the model used for interpreting the graph
* triples —if True, read as a conjunction of triples

Returns the Graph object described by s

Example

>>> decode (' (b / bark :ARG1l (d / dog))"')
<Graph object (top=b) at ...>

penman.interface.loads (string, model=None, triples=False)
Deserialize a list of PENMAN-encoded graphs from string.

Parameters

* string - a string containing graph data

* model — the model used for interpreting the graph

* triples - if True, read as a conjunction of triples
Returns a list of Graph objects

penman.interface.load (source, model=None, triples=False)
Deserialize a list of PENMAN-encoded graphs from source.

Parameters
* source — a filename or file-like object to read from
* model — the model used for interpreting the graph

* triples —if True, read as a conjunction of triples

23

Penman Documentation, Release v0.7.2

Returns a list of Graph objects

11.2 Graph-writing Functions

penman.interface.encode (g, top=None, model=None, triples=False, indent=-1, compact=False)
Serialize the graph g from fop to PENMAN notation.

Parameters
* g — the Graph object
* top —if given, the node to use as the top in serialization
* model — the model used for interpreting the graph
* triples —if True, serialize as a conjunction of triples
* indent — how to indent formatted strings
* compact - if True, put initial attributes on the first line

Returns the PENMAN:-serialized string of the Graph g

Example

>>> encode (Graph ([('h', 'instance', 'hi')1]))
(h / hi)

penman.interface.dumps (graphs, model=None, triples=False, indent=-1, compact=False)
Serialize each graph in graphs to the PENMAN format.

Parameters
* graphs — an iterable of Graph objects
* model — the model used for interpreting the graph
* triples —if True, serialize as a conjunction of triples
* indent — how to indent formatted strings
* compact —if True, put initial attributes on the first line
Returns the string of serialized graphs

penman.interface.dump (graphs, file, model=None, triples=False, indent=-1, compact=False)
Serialize each graph in graphs to PENMAN and write to file.

Parameters
* graphs — an iterable of Graph objects
» file - a filename or file-like object to write to
* model — the model used for interpreting the graph
* triples —if True, serialize as a conjunction of triples
* indent — how to indent formatted strings

* compact —if True, put initial attributes on the first line

24 Chapter 11. penman.interface

CHAPTER
TWELVE

PENMAN.LAYOUT

Interpreting trees to graphs and configuring graphs to trees.

In order to serialize graphs into the PENMAN format, a tree-like layout of the graph must be decided. Deciding a
layout includes choosing the order of the edges from a node and the paths to get to a node definition (the position in the
tree where a node’s concept and edges are specified). For instance, the following graphs for “The dog barked loudly”
have different edge orders on the b node:

(b / bark-01 (b / bark-01
:ARGO (d / dog) :mod (1 / loud)
:mod (1 / loud)) :ARGO (d / dog))

With re-entrancies, there are choices about which location of a re-entrant node gets the full definition with its concept
(node label), etc. For instance, the following graphs for “The dog tried to bark™ have different locations for the
definition of the d node:

(t / try-01 (t / try-01

:ARGO (d / dog) :ARGO d
:ARG1 (b / bark-01 :ARG1 (b / bark-01
:ARGO d)) :ARGO (d / dog))

With inverted edges, there are even more possibilities, such as:

(t / try-01 (t / try-01
:ARGO (d / dog :ARG1 (b / bark-01
:ARGO-0of b) :ARGO (d / dog
:ARG1 (b / bark-01)) :ARGO-of t)))

This module introduces two epigraphical markers so that a pure graph parsed from PENMAN can retain information
about its tree layout without altering its graph properties. The first marker type is Push, which is put on a triple to
indicate that the triple introduces a new node context, while the sentinel POP indicates that a triple is at the end of one
or more node contexts. These markers only work if the triples in the graph’s data are ordered. For instance, one of the
graphs above (repeated here) has the following data:

PENMAN Graph Epigraph
(t / try-01 [('t', ':instance', 'try-01'),
:ARGO (d / dog) ('t ':ARGO', 'd"), : Push('d")
:ARG1 (b / bark-01 ('d', ':instance', 'dog'), : POP
:ARGO d)) ('t', ':ARG1l', 'b"), : Push('b")
('b', ':instance', 'bark-01"'),
("', '":ARGO', 'd")] : POP

25

Penman Documentation, Release v0.7.2

12.1 Epigraphical Markers

class penman.layout.LayoutMarker
Bases: penman.epigraph.Epidatum

Epigraph marker for layout choices.

class penman.layout .Push (variable)
Bases: penman. layout.LayoutMarker

Epigraph marker to indicate a new node context.

penman.layout .POP = POP

Epigraphical marker to indicate the end of a node context.

12.2 Tree Functions

penman.layout.interpret (f, model=None)
Interpret tree ¢ as a graph using model.

Tree interpretation is the process of transforming the nodes and edges of a tree into a directed graph. A semantic
model determines which edges are inverted and how to deinvert them. If model is not provided, the default

model will be used.
Parameters
* t —the Tree to interpret
* model — the ModeI used to interpret ¢

Returns The interpreted Graph.

Example

>>> from penman.tree import Tree
>>> from penman import layout

>>> t = Tree(
("b', I
('/', 'bark', [1),
('ARGO', ('d', [
e (*/', 'dog', [1)1), [1)1))
>>> g = layout.interpret (t)

>>> for triple in g.triples:
print (triple)

('"b', ':instance', 'bark')
('b', ':ARGO', 'd')
('d'", ':instance', 'dog')

penman.layout .rearrange (f, key=None)
Sort the branches at each node in tree ¢ according to key.

Each node in a tree contains a list of branches. This function sorts those lists in-place using the key function,
which accepts a branch and returns some sortable criterion. If the first branch is the node label it will stay in

place after the sort.

26

Chapter 12. penman.layout

Penman Documentation, Release v0.7.2

Example

>>> from penman import layout

>>> from penman.model import Model

>>> from penman.codec import PENMANCodec

>>> ¢ = PENMANCodec ()

>>> t = c.parse(' (s / see :ARGO (d / dog) :ARGl (c / cat))"')

>>> layout.rearrange (t, key=Model () .random_order)
>>> print (c.format (t))
(s / see

:ARG1l (c / cat)
:ARGO (d / dog))

12.3 Graph Functions

penman.layout.configure (g, top=None, model=None, strict=False)
Create a tree from a graph by making as few decisions as possible.

A graph interpreted from a valid tree using interpret () will contain epigraphical markers that describe how
the triples of a graph are to be expressed in a tree, and thus configuring this tree requires only a single pass
through the list of triples. If the markers are missing or out of order, or if the graph has been modified, then
the configuration process will have to make decisions about where to insert tree branches. These decisions are
deterministic, but may result in a tree different than the one expected.

Parameters
* g—the Graph to configure
* top — the variable to use as the top of the graph; if None, the top of g will be used
* model - the Mode used to configure the tree

* strict —if True, raise LayoutError if decisions must be made about the configura-
tion

Returns The configured Tree.

Example
>>> from penman.graph import Graph
>>> from penman import layout
>>> g = Graph([('b', ':instance', 'bark'"),
('b'", '":ARGO', 'd"),
. ('d', ':instance', 'dog')l)
>>> t = layout.configure (g)
>>> print (t)
Tree (
("b', I
(*/', 'bark', [1),
(':ARGO', ('d', [
(*/', 'dog', [D)1), [1)1))

penman.layout .reconfigure (g, top=None, model=None, strict=False)
Create a tree from a graph after any discarding layout markers.

12.3. Graph Functions 27

Penman Documentation, Release v0.7.2

12.4 Diagnostic Functions

penman.layout .has_valid_layout (g, fop=None, model=None, strict=False)
Return True if g contains the information for a valid layout.

Having a valid layout means that the graph data allows a depth-first traversal that reconstructs a spanning tree
used for serialization.

penman.layout .appears_inverted (g, triple)
Return True if triple appears inverted in serialization.

More specifically, this function returns True if triple has a Push epigraphical marker in graph g whose associ-
ated variable is the source variable of triple. This should be accurate when testing a triple in a graph interpreted
using interpret () (including PENMANCodec . decode, etc.), but it does not guarantee that a new serial-
ization of g will express triple as inverted as it can change if the graph or its epigraphical markers are modified,
if a new top is chosen, etc.

Parameters
* g—a Graph containing triple
* triple - the triple that does or does not appear inverted

Returns True if triple appears inverted in graph g.

28 Chapter 12. penman.layout

CHAPTER
THIRTEEN

PENMAN.LEXER

Classes and functions for lexing PENMAN strings.

13.1 Module Constants

penman. lexer . PATTERNS
A dictionary mapping token names to regular expressions. For instance:

"ROLE': r':["\s()\/,:~"]x"

The token names are used later by the TokenIterator to help with parsing.

penman. lexer . PENMAN_ RE
A compiled regular expression pattern for lexing PENMAN graphs.

penman.lexer.TRIPLE_RE
A compiled regular expression pattern for lexing triple conjunctions.

13.2 Module Functions

penman. lexer.lex (lines, pattern=None)
Yield PENMAN tokens matched in lines.

By default, this lexes strings in lines using the basic pattern for PENMAN graphs. If pattern is given, it is used
for lexing instead.

Parameters
* lines —iterable of lines to lex
* pattern — pattern to use for lexing instead of the default ones

Returns A TokenIterator object

13.3 Classes

class penman.lexer.Token
A lexed token.

property line
The line the token appears in.

29

Penman Documentation, Release v0.7.2

property lineno
The line number the token appears on.

property offset
The character offset of the token.

property text
The matched string for the token.

property type
The token type.

class penman.lexer.TokenIterator (iterator)
An iterator of Tokens with L1 lookahead.

accept (*choices)
Return the next token if its type is in choices.

The iterator is advanced if successful. If unsuccessful, None is returned.

expect (*choices)
Return the next token if its type is in choices.

The iterator is advanced if successful.
Raises DecodeError — if the next token type is not in choices

next ()
Advance the iterator and return the next token.

Raises StopIteration —if the iterator is already exhausted.

peek ()
Return the next token but do not advance the iterator.

If the iterator is exhausted then a DecodeError is raised.

30

Chapter 13. penman.lexer

https://docs.python.org/3/library/exceptions.html#StopIteration

CHAPTER
FOURTEEN

PENMAN.MODEL

Semantic models for interpreting graphs.

class penman.model .Model (fop_variable="top’, top_role=":TOP’, concept_role=":instance’,

roles=None, normalizations=None, reifications=None)
A semantic model for Penman graphs.

The model defines things like valid roles and transformations.
Parameters

* top_variable - the variable of the graph’s top
* top_role - the role linking the graph’s top to the top node
* concept_role - the role associated with node concepts
* roles — a mapping of roles to associated data
* normalizations —a mapping of roles to normalized roles
* reifications - alist of 4-tuples used to define reifications

classmethod from dict (d)
Instantiate a model from a dictionary.

has_role (role)
Return True if role is defined by the model.

If role is not in the model but a single deinversion of role is in the model, then True is returned. Otherwise
False is returned, even if something like canonicalize role () could return a valid role.

is_role_inverted (1ole)
Return True if role is inverted.

invert_role (role)
Invert role.

invert (triple)
Invert triple.

This will invert or deinvert a triple regardless of its current state. deinvert () will deinvert a triple only
if it is already inverted. Unlike canonicalize (), this will not perform multiple inversions or replace
the role with a normalized form.

deinvert (triple)
De-invert triple if it is inverted.

Unlike invert (), this only inverts a triple if the model considers it to be already inverted, otherwise it
is left alone. Unlike canonicalize (), this will not normalize multiple inversions or replace the role
with a normalized form.

31

Penman Documentation, Release v0.7.2

canonicalize role (role)
Canonicalize role.

Role canonicalization will do the following:
* Ensure the role starts with ‘-’

* Normalize multiple inversions (e.g., ARGO-of—of becomes ARGO), but it does not change the direc-
tion of the role

* Replace the resulting role with a normalized form if one is defined in the model

canonicalize (triple)
Canonicalize triple.

See canonicalize_role () for a description of how the role is canonicalized. Unlike invert (),
this does not swap the source and target of rriple.

is_reifiable (triple)
Return True if the role of triple can be reified.

reify (triple, variables=None)
Return the three triples that reify triple.

Note that, unless variables is given, the node variable for the reified node is not necessarily valid for the
target graph. When incorporating the reified triples, this variable should then be replaced.

If the role of #riple does not have a defined reification, a Mode1Error is raised.
Parameters
* triple — the triple to reify
* variables — a set of variables that should not be used for the reified node’s variable
Returns The 3-tuple of triples that reify triple.

original_order (branch)
Branch sorting key that does not change the order.

canonical_ order (branch)
Branch sorting key that finds a canonical order.

random_order (branch)
Branch sorting key that randomizes the order.

32 Chapter 14. penman.model

CHAPTER
FIFTEEN

PENMAN.MODELS

This sub-package contains specified instances of the penman.model.Model class, although currently there is only
one instance.

15.1 Available Models

15.1.1 penman.models.amr

AMR semantic model definition.

penman.models.amr.model = <penman.model.Model object>
The AMR model is an instance of Mode 1 using the roles, normalizations, and reifications defined in this module.

penman.models.amr.roles = {':ARGO': {'type': 'frame'}, ':ARG1l': {'type': 'frame'}, ':Al
The roles are the edge labels of reifications. The purpose of roles in a Model is mainly to define the set of valid
roles, but they map to arbitrary data which is not used by the Model but may be inspected or used by client
code.

penman.models.amr.normalizations = {':domain-of': ':mod', ':mod-of': ' :domain'}
Normalizations are like role aliases. If the left side of the normalization is encountered by Model.
canonicalize_role () then it is replaced with the right side.

penman.models.amr.reifications = [(':accompanier', 'accompany-01', ':ARGO', ':ARGl'), (':a
Reifications are a particular kind of transformation that replaces an edge relation with a new node and two
outgoing edge relations, one inverted. They are used when the edge needs to behave as a node, e.g., to be
modified or focused.

33

Penman Documentation, Release v0.7.2

34

Chapter 15. penman.models

CHAPTER
SIXTEEN

PENMAN.SURFACE

Surface strings, tokens, and alignments.

16.1 Epigraphical Markers

class penman.surface.AlignmentMarker (indices, prefix=None)
Bases: penman.epigraph.Epidatum

class penman.surface.Alignment (indices, prefix=None)
Bases: penman.surface.AlignmentMarker

class penman.surface.RoleAlignment (indices, prefix=None)
Bases: penman.surface.AlignmentMarker

16.2 Module Functions

penman.surface.alignments (g)
Return a mapping of triples to alignments in graph g.

Parameters g —a Graph containing alignment data

Returns A dict mapping Triple objects to their corresponding A1ignment objects, if any.

penman.surface.role_alignments (g)
Return a mapping of triples to role alignments in graph g.

Parameters g —a Graph containing role alignment data

Returns A dict mapping Triple objects to their corresponding RoleAlignment objects, if

any.

35

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Penman Documentation, Release v0.7.2

36

Chapter 16. penman.surface

CHAPTER

SEVENTEEN

Tree and graph transformations.

penman.transform.canonicalize_ roles (t, model)
Normalize roles in ¢ so they are canonical according to model.

PENMAN.TRANSFORM

This is a tree transformation instead of a graph transformation because the orientation of the pure graph’s triples
is not decided until the graph is configured into a tree.

Parameters
* t —aTree object
* model — a model defining role normalizations

Returns A new Tree object with canonicalized roles.

Example

>>>
>>>
>>>
>>>
>>>
>>>
>>>

from penman.codec import PENMANCodec

from penman.models.amr import model

from penman.transform import canonicalize_roles
codec = PENMANCodec ()

t = codec.parse(' (c / chapter :domain-of 7)")
t = canonicalize_roles (t, model)
print (codec.format (t))

(c / chapter

:mod 7)

penman.transform.reify_ edges (g, model)
Reify all edges in g that have reifications in model.

Parameters
* g—aGraph object
* model - a model defining reifications

Returns A new Graph object with reified edges.

Example

>>>
>>>

from penman.codec import PENMANCodec
from penman.models.amr import model

>>> from penman.transform import reify_edges

(continues on next page)

37

Penman Documentation, Release v0.7.2

(continued from previous page)

>>> codec = PENMANCodec (model=model)
>>> g = codec.decode (' (c / chapter :mod 7)")
>>> g = reify_edges (g, model)
>>> print (codec.encode (g))
(c / chapter
:ARGl-of (_ / have-mod-91
:ARG2 7))

penman.transform.reify attributes(g)

Reify all attributes in g.
Parameters g—a Graph object

Returns A new Graph object with reified attributes.

Example

>>> from penman.codec import PENMANCodec
>>> from penman.models.amr import model
>>> from penman.transform import reify_attributes
>>> codec = PENMANCodec (model=model)
>>> g = codec.decode (' (c / chapter :mod 7)")
>>> g = reify_attributes(qg)
>>> print (codec.encode (g))
(c / chapter
tmod (_ / 7))

penman.transform.indicate_branches (g, model)

Insert TOP triples in g indicating the tree structure.

Note: This depends on g containing the epigraphical layout markers from parsing; it will not work with
programmatically constructed Graph objects or those whose epigraphical data were removed.

Parameters
* g—aGraph object
* model - a model defining the TOP role

Returns A new Graph object with TOP roles indicating tree branches.

Example

>>> from penman.codec import PENMANCodec
>>> from penman.models.amr import model
>>> from penman.transform import indicate_branches
>>> codec = PENMANCodec (model=model)
>>> g = codec.decode ("""
(w / want-01
:ARGO (b / boy)
ARGl (g / go-02
:ARGO b)) ''")

>>> g = indicate_branches (g, model)

(continues on next page)

38

Chapter 17. penman.transform

Penman Documentation, Release v0.7.2

(continued from previous page)

>>> print (codec.encode (g))
(w / want-01
:TOP b
:ARGO (b / boy)
:TOP g
:ARG1l (g / go-02
:ARGO D))

39

Penman Documentation, Release v0.7.2

40

Chapter 17. penman.transform

CHAPTER
EIGHTEEN

PENMAN.TREE

Definitions of tree structures.

class penman.tree.Tree (node, metadata=None)
A tree structure.

A tree is essentially a node that contains other nodes, but this Tree class is useful to contain any metadata and to
provide tree-based methods.

nodes ()
Return the nodes in the tree as a flat list.

penman.tree.is_atomic (x)
Return True if x is a valid atomic value.

41

Penman Documentation, Release v0.7.2

42

Chapter 18. penman.tree

CHAPTER
NINETEEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

43

Penman Documentation, Release v0.7.2

44

Chapter 19. Indices and tables

BIBLIOGRAPHY

[KAS1989] Robert T. Kaspar. A Flexible Interface for Linking Applications to Penman’s Sentence Generator.
Speech and Natural Language: Proceedings of a Workshop Held at Philadelphia, Pennsylvania. http:
/lwww.aclweb.org/anthology/H89-1022. February 21-23, 1989.

[GO02019] Michael Wayne Goodman. AMR Normalization for Fairer Evaluation. Proceedings of the 33rd Pacific
Asia Conference on Language, Information, and Computation (PACLIC 33). https://arxiv.org/pdf/1909.
01568.pdf. 2019.

45

http://www.aclweb.org/anthology/H89-1022
http://www.aclweb.org/anthology/H89-1022
https://arxiv.org/pdf/1909.01568.pdf
https://arxiv.org/pdf/1909.01568.pdf

Penman Documentation, Release v0.7.2

46

Bibliography

P

penman,
penman.
.epigraph, 17

penman

penman.
penman.
penman.
penman.
.lexer, 29

penman

penman.
.models, 33

penman

penman.
penman.
penman.
penman.

13
codec, 15

exceptions, 19
graph, 21
interface, 23
layout, 25

model, 31

models.amr, 33
surface, 35
transform, 37
tree, 41

PYTHON MODULE INDEX

47

Penman Documentation, Release v0.7.2

48

Python Module Index

A

accept () (penman.lexer.Tokenlterator method), 30
Alignment (class in penman.surface), 35
AlignmentMarker (class in penman.surface), 35
alignments () (in module penman.surface), 35
appears_inverted () (in module penman.layout),
28
ATOMS (penman.codec. PENMANCodec attribute), 15
Attribute (class in penman.graph), 22
attributes () (penman.graph.Graph method), 21

C

canonical_order ()
method), 32
canonicalize () (penman.model.Model method), 32

(penman.model.Model

canonicalize_role() (penman.model.Model
method), 31
canonicalize_roles () (in module pen-

man.transform), 37
configure () (in module penman.layout), 27

D

decode () (in module penman), 14

decode () (in module penman.interface), 23

decode () (penman.codec. PENMANCodec method), 15
DecodeError, 14, 19

deinvert () (penman.model. Model method), 31

dump () (in module penman), 14

dump () (in module penman.interface), 24

dumps () (in module penman), 14

dumps () (in module penman.interface), 24

E

Edge (class in penman.graph), 22

edges () (penman.graph.Graph method), 21

encode () (in module penman), 14

encode () (in module penman.interface), 24

encode () (penman.codec. PENMANCodec method), 16
epidata (penman.graph.Graph attribute), 21
Epidatum (class in penman.epigraph), 17

expect () (penman.lexer.Tokenlterator method), 30

INDEX

F

format () (penman.codec. PENMANCodec method), 16

format_triples () (penman.codec.PENMANCodec
method), 16

from_dict () (penman.model. Model class method), 31

G

Graph (class in penman), 14
Graph (class in penman.graph), 21
GraphError, 19

H

has_role () (penman.model.Model method), 31
has_valid_layout () (in module penman.layout),
28

indicate_branches()
man.transform), 38
interpret () (in module penman.layout), 26
invert () (penman.model. Model method), 31
invert_role () (penman.model.Model method), 31
is_atomic () (in module penman.tree), 41
is_reifiable () (penman.model.Model method), 32

(in module pen-

is_role_inverted() (penman.model. Model
method), 31

iterdecode () (penman.codec. PENMANCodec
method), 15

L

LayoutError, 19

LayoutMarker (class in penman.layout), 26
lex () (in module penman.lexer), 29

line () (penman.lexer.Token property), 29
lineno () (penman.lexer.Token property), 29
load () (in module penman), 14

load () (in module penman.interface), 23
loads () (in module penman), 14

loads () (in module penman.interface), 23

M

metadata (penman.graph.Graph attribute), 21

49

Penman Documentation, Release v0.7.2

mode (penman.epigraph. Epidatum attribute), 17
Model (class in penman.model), 31

model (in module penman.models.amr), 33
ModelError, 19

N

next () (penman.lexer.Tokenlterator method), 30
nodes () (penman.tree.Tree method), 41
normalizations (in module penman.models.amr), 33

O

offset () (penman.lexer.Token property), 30
original_order () (penman.model.Model method),
32

P

parse () (penman.codec. PENMANCodec method), 15
parse_triples () (penman.codec.PENMANCodec
method), 16
PATTERNS (in module penman.lexer), 29
peek () (penman.lexer. Tokenlterator method), 30
penman (module), 13
penman.__version__ (in module penman), 14
penman.__ version_info__ (in module penman),
14

penman . codec (module), 15
penman.epigraph (module), 17
penman.exceptions (module), 19
penman.graph (module), 21
penman.interface (module), 23
penman. layout (module), 25
penman. lexer (module), 29
penman.model (module), 31
penman.models (module), 33
penman.models . amr (module), 33
penman. surface (module), 35
penman.transform (module), 37
penman.tree (module), 41
PENMAN_RE (in module penman.lexer), 29
PENMANCodec (class in penman), 14
PENMANCodec (class in penman.codec), 15
PenmanError, 14, 19
POP (in module penman.layout), 26
Push (class in penman.layout), 26
Python Enhancement Proposals

PEP 484,4

PEP 526,4

R

random_order () (penman.model.Model method), 32
rearrange () (in module penman.layout), 26
reconfigure () (in module penman.layout), 27
reentrancies () (penman.graph.Graph method), 22
reifications (in module penman.models.amr), 33

reify () (penman.model. Model method), 32
reify_attributes () (in module
man.transform), 38
reify_edges () (in module penman.transform), 37
role (penman.graph.Triple attribute), 22
role_alignments () (in module penman.surface), 35
RoleAlignment (class in penman.surface), 35
roles (in module penman.models.amr), 33

S

source (penman.graph.Triple attribute), 22
SurfaceError, 19

T

target (penman.graph.Triple attribute), 22
text () (penman.lexer.Token property), 30
Token (class in penman.lexer), 29
TokenIterator (class in penman.lexer), 30
top (penman.graph.Graph attribute), 21
Tree (class in penman.tree), 41

Triple (class in penman), 14

Triple (class in penman.graph), 22
TRIPLE_RE (in module penman.lexer), 29
triples (penman.graph.Graph attribute), 21
type () (penman.lexer.Token property), 30

V

variables () (penman.graph.Graph method), 22

pen-

50

Index

	Installation and Setup
	Requirements
	Installation
	Testing

	Basic Usage
	Using Penman as a Tool
	Using Penman as a Library

	PENMAN Notation
	Trees, Graphs, and Epigraphs
	Notes on Serialization
	Allowed Graphs

	penman
	Submodules
	Module Constants
	Classes
	Module Functions
	Exceptions

	penman.codec
	penman.epigraph
	penman.exceptions
	penman.graph
	penman.interface
	Graph-reading Functions
	Graph-writing Functions

	penman.layout
	Epigraphical Markers
	Tree Functions
	Graph Functions
	Diagnostic Functions

	penman.lexer
	Module Constants
	Module Functions
	Classes

	penman.model
	penman.models
	Available Models

	penman.surface
	Epigraphical Markers
	Module Functions

	penman.transform
	penman.tree
	Indices and tables
	Bibliography
	Python Module Index
	Index

