

Welcome to Penman’s documentation!

Quick Links

	Project page [https://github.com/goodmami/penman]

	How to contribute [https://github.com/goodmami/penman/blob/master/CONTRIBUTING.md]

	Report a bug [https://github.com/goodmami/penman/issues]

	Changelog [https://github.com/goodmami/penman/blob/master/CHANGELOG.md]

	License (MIT) [https://github.com/goodmami/penman/blob/master/LICENSE]

The Penman package is a library for working with graphs in the PENMAN
format. Its primary job is thus parsing the serialized form into an
internal graph representation and format
graphs into the serialized form again. Once parsed, the graphs can be
inspected and manipulated, depending on one’s needs.

The interpretation of PENMAN into the internal graph depends on a
semantic model. The default model works
in most cases, but for people working with Abstract Meaning
Representation [https://amr.isi.edu/] (AMR) data, the AMR
model will allow them to perform operations in a
way that follows the principles of AMR. Users may also define custom
models if they need more control.

Guides

	Installation and Setup
	Requirements

	Installation

	For Contributors

	Using the penman Command
	Command Usage

	Reformatting

	Specifying a Model

	Checking for Model Compliance

	Transforming Graphs

	Using Penman as a Python Library

	PENMAN Notation
	Graph Anatomy

	Formal Grammar

	Trees, Graphs, and Epigraphs

	Notes on Serialization
	Allowed Graphs

API Reference:

	penman

	penman.codec

	penman.constant

	penman.epigraph

	penman.exceptions

	penman.graph

	penman.layout

	penman.model

	penman.models

	penman.surface

	penman.transform

	penman.tree

Indices and tables

	Index

	Module Index

	Search Page

Installation and Setup

Penman releases are available on PyPI [https://pypi.org/project/Penman/] and the source code is on
GitHub [https://github.com/goodmami/penman/].

Requirements

The Penman package runs with Python 3.8 [https://www.python.org/] and higher versions, but
otherwise it has no dependencies beyond Python’s standard library.

Installation

Install the latest version from PyPI [https://pypi.org/project/Penman/] with pip:

$ pip install penman

This command makes the penman module available in your Python
environment and as well as the penman command at the
command line.

For Contributors

Developers and contributors of Penman can clone the source code and use Hatch [https://hatch.pypa.io/] to interact with the project:

$ git clone https://github.com/goodmami/penman.git
$ cd penman/
$ hatch version
1.2.3

The dev environment contains scripts for linting, type-checking,
and testing the code:

$ hatch run dev:lint
$ hatch run dev:typecheck
$ hatch run dev:test

The docs environment contains scripts for building the
documentation and for cleaning the build files:

$ hatch run docs:build
$ hatch run docs:clean

Using the penman Command

The penman command allows users to perform most
reformatting tasks and predefined transformations without having to
write any code. For example, the following reformats a graph in one
line to a more conventional presentation:

$ penman --indent 3 --compact <<< '(s / sleep-01 :polarity - :ARG0 (i / i))'
(s / sleep-01 :polarity -
 :ARG0 (i / i))

The command becomes available at the command-line after installing
Penman (see Installation and Setup). This guide will explain how to use the
command for several use cases.

Command Usage

The penman command reads in data from stdin or from one or
more files then prints the results to stdout. By default, the command
will do nothing but apply the default formatting to the graphs, but
any input content that is not a graph or a metadata comment will be
discarded. To see what features are available for the current version
and how to call the command, run penman --help:

usage: penman [-h] [-V] [-v] [-q] [--model FILE | --amr | --noop] [--check]
 [--indent N] [--compact] [--triples] [--make-variables FMT]
 [--rearrange KEY] [--reconfigure KEY] [--canonicalize-roles]
 [--reify-edges] [--dereify-edges] [--reify-attributes]
 [--indicate-branches]
 [FILE [FILE ...]]

Read and write graphs in the PENMAN notation.

positional arguments:
 FILE read graphs from FILEs instead of stdin

optional arguments:
 -h, --help show this help message and exit
 -V, --version show program's version number and exit
 -v, --verbose increase verbosity
 -q, --quiet suppress output on <stdout> and <stderr>
 --model FILE JSON model file describing the semantic model
 --amr use the AMR model
 --noop use the no-op model
 --check check graphs for compliance with the model

formatting options:
 --indent N indent N spaces per level ("no" for no newlines)
 --compact compactly print node attributes on one line
 --triples print graphs as triple conjunctions

normalization options:
 --make-variables FMT recreate node variables with FMT (e.g.: '{prefix}{j}')
 --rearrange KEY reorder the branches of the tree
 --reconfigure KEY reconfigure the graph layout with reordered triples
 --canonicalize-roles canonicalize role forms
 --reify-edges reify all eligible edges
 --dereify-edges dereify all eligible edges
 --reify-attributes reify all attributes
 --indicate-branches insert triples to indicate tree structure

Reformatting

There are two options for reformatting graphs that use newlines and
indentation to make them more friendly to human eyes. The
--indent option controls how much each nesting level
indents and the --compact option determines whether
attributes immediately following a concept appear on the same line as
the concept or on their own lines. For this section, consider the
following graph:

$ x="(w / want-01 :polarity - :ARG0 (c / child) :ARG1 (g / go :ARG0 c))"

Default Formatting

By default, compact mode is off and --indent has the
special value -1, which performs “adaptive indenting”. This
appears as follows:

$ echo "$x" | penman
(w / want-01
 :polarity -
 :ARG0 (c / child)
 :ARG1 (g / go
 :ARG0 c))

Changing the Indentation

Giving a specific indent number makes Penman always indent that number
of spaces:

$ echo "$x" | penman --indent 3
(w / want-01
 :polarity -
 :ARG0 (c / child)
 :ARG1 (g / go
 :ARG0 c))

Compact Attributes

Compact mode puts attributes on the same line as the concept of their
node, but only if they appear in that position in the tree:

$ echo "$x" | penman --compact
(w / want-01 :polarity -
 :ARG0 (c / child)
 :ARG1 (g / go
 :ARG0 c))

Single-Line Graphs

With --indent=no, Penman outputs a full graph on one
line. This can be useful for programs that read data line-by-line or
for creating bilingually aligned files:

$ echo "$x" | penman
(w / want-01
 :polarity -
 :ARG0 (c / child)
 :ARG1 (g / go
 :ARG0 c))
$ echo "$x" | penman | penman --indent=no
(w / want-01 :polarity - :ARG0 (c / child) :ARG1 (g / go :ARG0 c))

Note that --indent=0 is not the same as
--indent=no. The former delimits parts with a single
newline but no leading space whereas the latter delimits parts with a
single space and no newlines. Also, the --compact option is
relevant when --indent has a numeric value but not for
--indent=no.

Specifying a Model

While the formatting options do not require knowledge of the semantic
model, others, such as --check and many transformations, do
require it. For Abstract Meaning Representation (AMR) graphs, the
--amr option uses the built-in AMR model:

$ penman --amr [...]

This model contains information about AMR’s valid roles, canonical
role inversions (such as :domain to :mod), and relation
reifications. Also available is the no-op model via --noop,
which does not deinvert tree edges when interpreting the graph so that
a role like :ARG0-of is the role used in the graph triples.

Other models can be given by using the --model option with
a path to a JSON file containing the model information:

$ penman --model=xyz.json [...]

Custom models can be used for variations of AMR (e.g., different
versions or task-specific definitions) or even for different semantic
frameworks altogether.

Checking for Model Compliance

With a model specified, a graph can be checked for compliance with
respect to the model using the --check option. For graphs
already in PENMAN notation, the only relevant test is whether a role
is defined by the model. When graphs are constructed programatically,
there are additional checks for graphical well-formedness, such as for
an appropriate graph-top being set and for graph connectedness. When
used as a command, the exit code of the command will be 0 when
there are no errors or 1 when any errors are found. This helps
make the check be scriptable. Also, the individual errors are inserted
as metadata comments on each graph to help users resolve errors:

$ good="(s / swim-01 :ARG0 (i / i))" # I swim.
$ bad="(s / swim-01 :ARG0 (i / i) :stroke (b / backstroke))" # I swim backstroke.
$ if (echo "$good" | penman --amr --check); then
> echo "valid"
> else
> echo "invalid"
> fi
(s / swim-01
 :ARG0 (i / i))
valid
$ if (echo "$bad" | penman --amr --check); then
> echo "valid"
> else
> echo "invalid"
> fi
::error-1 (s :stroke b) invalid role
(s / swim-01
 :ARG0 (i / i)
 :stroke (b / backstroke))
invalid

Transforming Graphs

Penman’s transformations work either on the tree or the graph representation.

Relabeling Nodes

The simplest transformation maps variables to a new form with the
--make-variables option. In English AMR the variables use
the first letter of the concept and, if it is not unique, the 1-based
index starting from the second when traversing the tree in depth-first
order. AMR’s primary evaluation tool smatch relabels all nodes
internally so one side uses a0, a1, etc. and the other side
uses b0, b1, etc. Penman allows users to specify the variable
format with three template variables:

	{prefix} uses the first character of a node’s concept

	{i} is the 0-based index of a node’s occurrence

	{j} is the 1-based index of a node’s occurrence, where index 1 is blank

Unlike the other transformations, --make-variables does not
require a model:

$ original="(x0 / chase-01 :ARG0 (x1 / cat) :ARG1 (x2 / mouse))"
$ echo "$original" | penman --make-variables='a{i}'
(a0 / chase-01
 :ARG0 (a1 / cat)
 :ARG1 (a2 / mouse))
$ echo "$original" | penman --make-variables='{prefix}{j}'
(c / chase-01
 :ARG0 (c2 / cat)
 :ARG1 (m / mouse))

Rearranging Branches

Tree branches can be rearranged without changing the overall tree
structure using the --rearrange option. It takes the name
of a method for sorting the branches on a node:

$ original="(c / chase-01 :ARG1 (m / mouse) :polarity - :ARG0 (c2 / cat))"
$ echo "$original" | penman --rearrange=attributes-first
(c / chase-01
 :polarity -
 :ARG1 (m / mouse)
 :ARG0 (c2 / cat))
$ echo "$original" | penman --rearrange=alphanumeric
(c / chase-01
 :ARG0 (c2 / cat)
 :ARG1 (m / mouse)
 :polarity -)

The sorting methods can be combined in prioritized order:

$ echo "$original" | penman --rearrange=attributes-first,alphanumeric
(c / chase-01
 :polarity -
 :ARG0 (c2 / cat)
 :ARG1 (m / mouse))

Reconfiguring the Tree

In Penman, the epigraph is a side-channel of information that allows
it to configure (reconstruct) the original tree that led to a graph
representation. The --reconfigure option first discards
this epigraphical information then configures the tree afresh, which
may lead to more drastic restructuring than just rearranging tree
branches. Like --rearrange, it takes a sorting method as
its argument. Often it is helpful to use --rearrange with
--reconfigure, so the reconfigured tree still follows an
expected branch order:

$ original="(s / sell-01 :ARG0 (i / i) :ARG1 (b / book :ARG1-of (r / read :ARG0 i)))"
$ echo "$original" | penman
(s / sell-01
 :ARG0 (i / i)
 :ARG1 (b / book
 :ARG1-of (r / read
 :ARG0 i)))
$ echo "$original" | penman --reconfigure=random --rearrange=alphanumeric
(s / sell-01
 :ARG0 (i / i
 :ARG0-of (r / read
 :ARG1 (b / book)))
 :ARG1 b)

Note that --reconfigure does not change which variable is
the graph’s top. This is because the resulting graph should encode the
same information, and the top node is treated specially. For example,
in AMR it is considered the focused node. A reconfigured graph will
return a perfect score with the original using a metric like smatch.

Normalizations

The remaining options are normalizations that may alter the content of
the graph. The --canonicalize-roles option will replace
roles that the model defines as equivalent, such as :domain-of and
:mod in AMR:

$ echo "(c / chapter :domain-of 7)" | penman --amr --canonicalize-roles
(c / chapter
 :mod 7)

Penman can handle relations that are over-inverted one time, but does
not check further than that. The --canonicalize-roles
option will try harder to resolve over-inversions. For this
functionality, a model is not strictly necessary unless the
over-inverted role itself needs to be canonicalized:

$ echo "(b / bark-01 :ARG0-of-of (d / dog))" | penman
(b / bark-01
 :ARG0 (d / dog))
$ echo "(b / bark-01 :ARG0-of-of-of-of (d / dog))" | penman
(b / bark-01
 :ARG0-of-of (d / dog))
$ echo "(b / bark-01 :ARG0-of-of-of-of (d / dog))" | penman --canonicalize-roles
(b / bark-01
 :ARG0 (d / dog))

The --reify-edges option converts edges into nodes for
edges that have a reification defined in the model:

$ echo "(c / chapter :mod 7)" | penman --amr --reify-edges
(c / chapter
 :ARG1-of (_ / have-mod-91
 :ARG2 7))

The _ (_2, etc.) variables indicate which have been
reified. Combine with --make-variables to use standard
variable names (e.g., h in this example). The
--dereify-edges is the reverse of
--reify-edges:

$ echo "(c / chapter :mod 7)" | penman --amr --reify-edges | penman --amr --dereify-edges
(c / chapter
 :mod 7)

The --reify-attributes option reifies attribute relations
(those where the value is a constant) so the constant value becomes
the concept of a new node:

$ echo "(c / chapter :mod 7)" | penman --amr --reify-attributes
(c / chapter
 :mod (_ / 7))

Finally, the --indicate-branches option inserts relations
that hint at the original tree structure. This can be useful if a tool
that produces PENMAN graphs, like an AMR parser, wants to use a tool
like smatch to compare its output to gold trees and not just gold
graphs.

Using Penman as a Python Library

For some cases, the penman command is not flexible enough
and it becomes necessary to write some Python code. Penman’s Python
API is well-documented and well-tested and lets you dig into the
actual structures holding the data. One case where it’s currently
necessary to write code is for arbitrary graph editing. For example,
perhaps you want to anonymize all attributes with numeric values. Here
is one way to do that with the API:

>>> import penman
>>> from penman import constant
>>> g = penman.decode('(b / buy-01 :ARG0 (i / i) :ARG1 (a / apple :quant 3))')
>>> anon_map = {}
>>> attributes = []
>>> for src, role, tgt in g.attributes():
... if constant.type(tgt) in (constant.INTEGER, constant.FLOAT):
... anon_val = f'number_{len(anon_map)}'
... anon_map[anon_val] = tgt
... tgt = anon_val
... attributes.append((src, role, tgt))
...
>>> g2 = penman.Graph(g.instances() + g.edges() + attributes)
>>> print(penman.encode(g2))
(b / buy-01
 :ARG0 (i / i)
 :ARG1 (a / apple
 :quant number_0))
>>> anon_map
{'number_0': '3'}

This could be improved, such as making the anonymization into a
function. It could also be made to work on the
Tree structure if you care about keeping the
original tree intact as this procedure loses the epigraphical markers
needed to reconstruct the tree from the graph.

The API is also useful for deeper inspection of graphs. For example:

>>> import penman
>>> g = penman.decode('''
... # ::id ex1 ::snt The dog barked.
... (b / bark-01
... :ARG0 (d / dog))
... ''')
>>> g.top
'b'
>>> g.instances()
[Instance(source='b', role=':instance', target='bark-01'), Instance(source='d', role=':instance', target='dog')]
>>> g.edges()
[Edge(source='b', role=':ARG0', target='d')]
>>> sorted(g.variables())
['b', 'd']
>>> g.metadata
{'snt': 'The dog barked.', 'id': 'ex1'}
>>> g.epidata
{('b', ':instance', 'bark-01'): [], ('b', ':ARG0', 'd'): [Push(d)], ('d', ':instance', 'dog'): [POP]}
>>> g.reentrancies()
{}

Or for inserting surface alignments:

>>> from penman import surface
>>> g.metadata['tok'] = 'The dog barked .'
>>> g.epidata[('b', ':instance', 'bark-01')].append(surface.Alignment((2,), prefix='e.'))
>>> g.epidata[('d', ':instance', 'dog')].append(surface.Alignment((1,), prefix='e.'))
>>> print(penman.encode(g))
::snt The dog barked.
::id ex1
::tok The dog barked .
(b / bark-01~e.2
 :ARG0 (d / dog~e.1))

Many tasks can be accomplished with the basic API available at the
top-level penman module, but some more advanced usage requires
the use of specific submodules, such as the use of
penman.constant and penman.surface above. See the
API documentation for more information.

PENMAN Notation

PENMAN notation, originally called Sentence Plan Notation in the
PENMAN project [https://www.isi.edu/natural-language/penman/penman.html] ([KAS1989]), is a serialization format for the
directed, rooted graphs used to encode semantic dependencies, most
notably in the Abstract Meaning Representation [https://amr.isi.edu/] (AMR) framework. It
looks similar to Lisp’s S-Expressions [https://en.wikipedia.org/wiki/S-expression] in using parentheses to
indicate nested structures. For example, here is an AMR for “He drives
carelessly.”:

(d / drive-01
 :ARG0 (h / he)
 :manner (c / care-04
 :polarity -))

Described below are a breakdown of the parts of the PENMAN graph above
as well as a formal grammar description of PENMAN graphs in general.

Graph Anatomy

The following diagram explains what each part of the graph above is:

; ┌────────────────────────── Variable (this one is the graph's top)
; │ ┌──────────────────── Instance relation
; ┴ ────┴─────
 (d / drive-01
; ┬ ───┬────
; | └─────────────────── Concept (node label)
; └──────────────────────── Indicates the node's concept
; ┌────────────────── Edge relation
; ──────┴───────
 :ARG0 (h / he)
; ──┬──
; └────────────────────── Role (edge label)
 :manner (c / care-04
; ┌──────── Attribute relation
; ─────┴─────
 :polarity -))
; ┬
; └─── Atom (or "constant")

The linearized form can only describe projective structures such as
trees, so in order to capture non-projective graphs, nodes get
identifiers (called variables; e.g., d, h, and c above)
which can be referred to later to establish a reentrancy.

Formal Grammar

PENMAN notation can be very roughly described with the following BNF [https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form] grammar
(from [GOO2019]):

<node> ::= '(' <id> '/' <node-label> <edge>* ')'
<edge> ::= ':'<edge-label> (<const>|<id>|<node>)

A more complete description is given by the following PEG [https://en.wikipedia.org/wiki/Parsing_expression_grammar]
grammar. In addition to being more complete, it also extends the
grammar to allow for surface alignments.

Syntactic productions (whitespace is allowed around non-terminals)
Start <- Node
Node <- '(' Variable NodeLabel? Relation* ')'
NodeLabel <- '/' Concept Alignment?
Concept <- Constant
Relation <- Role Alignment? (Node / Atom Alignment?)
Atom <- Variable / Constant
Constant <- String / Symbol
Variable <- Symbol

Lexical productions (whitespace is not allowed)
Symbol <- NameChar+
Role <- ':' NameChar*
Alignment <- '~' ([a-zA-Z] '.'?)? Digit+ (',' Digit+)*
String <- '"' (!'"' ('\\' . / .))* '"'
NameChar <- ![\n\t\r\f\v()/:~] .
Digit <- [0-9]

This grammar has some seemingly unnecessary ambiguity in that both the
Variable and Constant alternatives for Atom can resolve to
Symbol, but it is written this way to accommodate syntax variants
that further restrict the form of variables. Also, the distinction
between edge relations and attribute relations is semantic: if the
target of a relation is the variable of some other node, then it is an
edge, otherwise it is an attribute.

Note that the implementation in the Penman package deviates from this
grammar in that the Alignment production is not parsed together
with the rest of the structure. Instead, the ~ character is
allowed on NameChar and alignments are thus part of the Role
or Atom tokens. They are later detected and extracted during
graph interpretation (see penman.layout.interpret()).

[KAS1989]
Robert T. Kaspar. A Flexible Interface for Linking
Applications to Penman’s Sentence Generator. Speech and
Natural Language: Proceedings of a Workshop Held at
Philadelphia, Pennsylvania.
http://www.aclweb.org/anthology/H89-1022.
February 21-23, 1989.

[GOO2019]
Michael Wayne Goodman. AMR Normalization for Fairer
Evaluation. Proceedings of the 33rd Pacific Asia
Conference on Language, Information, and Computation
(PACLIC 33). https://arxiv.org/pdf/1909.01568.pdf. 2019.

Trees, Graphs, and Epigraphs

On the surface, the structures encoded in PENMAN Notation (see
here) are a tree, and only by resolving repeated
node identifiers (variables) as reentrancies does the actual graph
become accessible. The Penman library thus accommodates the three
stages of a structure: the linear PENMAN string, the surface
tree, and the pure graph. Going from a string to a tree is called
parsing, and from a tree to a graph is interpretation, while
the whole process (string to graph) is called decoding. Going from
a graph to a tree is called configuration, and from a tree to a
string is formatting, while the whole process is called
encoding. These processes are illustrated by the following figure
(concepts are not shown on the tree and graph for simplicity):

[image: The three stages of PENMAN structure.]
Conversion from a PENMAN string to a Tree, and
vice versa, is straightforward and lossless. Conversion to a
Graph, however, is potentially lossy as the
same graph can be represented by different trees. For example, the
graph in the figure above could be serialized to any of these PENMAN
strings:

(a / alpha (a / alpha (a / alpha
 :ARG0 (b / beta) :ARG0 (b / beta :ARG0 (b / beta
 :ARG0-of (g / gamma :ARG1-of (g / gamma)) :ARG1-of (g / gamma
 :ARG1 b)) :ARG0-of g) :ARG0 a)))

Even more serializations are possible if you do not require the first
occurrence of a variable to define the node (with its node label
(concept) and outgoing edges), or if you allow other nodes to be the
top.

The Penman library therefore introduces the concept of the
epigraph (not to be confused with other senses of epigraph, such
as an inscription on a building or a passage at the beginning of a
book), which is information on top of the graph that instructs the
codec how the graph should be
serialized. The epigraph is thus analagous to the idea of the
epigenome [https://en.wikipedia.org/wiki/Epigenome]: epigenetic
markers controls how genes are expressed in an individual as the
epigraphical markers control how graph triples are expressed in a tree
or string. Separating the graph and the epigraph thus allow the graph
to be a pure representation of the triples expressed in a PENMAN
serialization without losing information about the surface form.

There are currently two kinds of epigraphical markers: layout markers
and surface alignment markers. Surface alignment markers are parsed
from the string and stored in the tree then propagated to the graph
upon interpretation. Layout markers are created when the tree is
interpreted into a graph. When an edge goes to a new node and not a
constant or variable, a Push marker is
inserted. When a node ends, a POP marker is
inserted. With these markers, and the ordering of triples, the graph
can be configured to a specific tree structure.

Notes on Serialization

A PENMAN-serialized graph takes the form of a tree with labeled
reentrancies, so in deserialization it is first parsed directly into a
tree and then the pure graph is interpreted from it.

(b / bark-01
 :ARG0 (d / dog))

The above PENMAN string is parsed to the following tree:

Tree(('b', [(':instance', 'bark-01'),
 (':ARG0', ('d', [(':instance', 'dog')]))]))

The structure of a tree node is (var, branches) while the
structure of a branch is (role, target). The target of a branch
can be an atomic value or a tree node. This tree is then interpreted
to the following graph (triples and associated layout markers):

Graph(triples=[
 ('b', ':instance', 'bark-01'),
 ('b', ':ARG0', 'd'),
 ('d', ':instance', 'dog')
],
 epidata={
 ('b', ':ARG0', 'd'): [Push('d')],
 ('d', ':instance', 'dog'): [POP]
 })

Serialization goes in the reverse order: from a pure graph to a tree
to a string.

Allowed Graphs

The Penman library robustly allows some kinds of invalid and
unconventional graphs.

Unproblematic:

Normal
(a / a-label :ROLE (b / b-label))

Unlabeled nodes, edges
(a :ROLE (b))
(a / a-label : (b / b-label))
(a : (b))

Cycles
(a :ROLE (b :ROLE a))

Distributed nodes
(a :ROLE (b :ROLE (c / c-label)) :ROLE2 (c :ATTR val))

Allowed but Unconventional

Empty
()

Missing edge target
(a / a-label :ROLE)

Missing node label
(a / :ROLE (b / b-label))

Inverted attributes
(a / a-label :ARG0-of 2)

Disallowed

Disconnected (parseable as two separate graphs)
(a / a-label)(b / b-label)

Missing identifiers
(a :ROLE (/ b-label))

Misplaced label
(a :ROLE (b) / a-label)

Multiple labels
(a / a-label / another-label)

penman

Penman graph library.

For basic usage, common functionality is available from the top-level
penman module. For more advanced usage, please use the full API
available via the submodules.

Users wanting to interact with graphs might find the decode() and
encode() functions a good place to start:

>>> import penman
>>> g = penman.decode('(w / want-01 :ARG0 (b / boy) :ARG1 (g / go :ARG0 b))')
>>> g.top
'w'
>>> len(g.triples)
6
>>> [concept for _, _, concept in g.instances()]
['want-01', 'boy', 'go']
>>> print(penman.encode(g, top='b'))
(b / boy
 :ARG0-of (w / want-01
 :ARG1 (g / go
 :ARG0 b)))

The decode() and encode() functions work with one PENMAN
graph. The load() and dump() functions work with
collections of graphs.

Users who want to work with trees would use parse() and
format() instead:

>>> import penman
>>> t = penman.parse('(w / want-01 :ARG0 (b / boy) :ARG1 (g / go :ARG0 b))')
>>> var, branches = t.node
>>> var
'w'
>>> len(branches)
3
>>> role, target = branches[2]
>>> role
':ARG1'
>>> print(penman.format(target))
(g / go
 :ARG0 b)

Module Constants

	
penman.__version__

	The software version string.

	
penman.__version_info__

	The software version as a tuple.

Classes

	
class penman.Tree

	Alias of penman.tree.Tree.

	
class penman.Triple

	Alias of penman.graph.Triple.

	
class penman.Graph

	Alias of penman.graph.Graph.

	
class penman.PENMANCodec

	Alias of penman.codec.PENMANCodec.

Module Functions

Trees

	
penman.parse(s)

	Parse PENMAN-notation string s into its tree structure.

	Parameters:

	s – a string containing a single PENMAN-serialized graph

	Returns:

	The tree structure described by s.

Example

>>> import penman
>>> penman.parse('(b / bark-01 :ARG0 (d / dog))') # noqa
Tree(('b', [('/', 'bark-01'), (':ARG0', ('d', [('/', 'dog')]))]))

	
penman.iterparse(lines)

	Yield trees parsed from lines.

	Parameters:

	lines – a string or open file with PENMAN-serialized graphs

	Returns:

	The Tree object described in lines.

Example

>>> import penman
>>> for t in penman.iterparse('(a / alpha) (b / beta)'):
... print(repr(t))
...
Tree(('a', [('/', 'alpha')]))
Tree(('b', [('/', 'beta')]))

	
penman.format(tree, indent=-1, compact=False)

	Format tree into a PENMAN string.

	Parameters:

	
	tree – a Tree object

	indent – how to indent formatted strings

	compact – if True, put initial attributes on the first line

	Returns:

	the PENMAN-serialized string of the Tree t

Example

>>> import penman
>>> print(penman.format(
... ('b', [('/', 'bark-01'),
... (':ARG0', ('d', [('/', 'dog')]))])))
(b / bark-01
 :ARG0 (d / dog))

	
penman.interpret(t, model=None)

	Interpret a graph from the Tree t.

Alias of penman.layout.interpret()

Graphs

	
penman.decode(s, model=None)

	Deserialize PENMAN-serialized s into its Graph object

	Parameters:

	
	s – a string containing a single PENMAN-serialized graph

	model – the model used for interpreting the graph

	Returns:

	the Graph object described by s

Example

>>> import penman
>>> penman.decode('(b / bark-01 :ARG0 (d / dog))')
<Graph object (top=b) at ...>

	
penman.iterdecode(lines, model=None)

	Yield graphs parsed from lines.

	Parameters:

	
	lines – a string or open file with PENMAN-serialized graphs

	model – the model used for interpreting the graph

	Returns:

	The Graph objects described in
lines.

Example

>>> import penman
>>> for g in penman.iterdecode('(a / alpha) (b / beta)'):
... print(repr(g))
<Graph object (top=a) at ...>
<Graph object (top=b) at ...>

	
penman.encode(g, top=None, model=None, indent=-1, compact=False)

	Serialize the graph g from top to PENMAN notation.

	Parameters:

	
	g – the Graph object

	top – if given, the node to use as the top in serialization

	model – the model used for interpreting the graph

	indent – how to indent formatted strings

	compact – if True, put initial attributes on the first line

	Returns:

	the PENMAN-serialized string of the Graph g

Example

>>> import penman
>>> from penman.graph import Graph
>>> penman.encode(Graph([('h', 'instance', 'hi')]))
'(h / hi)'

	
penman.configure(g, top=None, model=None)

	Configure a tree from the Graph g.

Alias of penman.layout.configure()

Corpus Files

	
penman.loads(string, model=None)

	Deserialize a list of PENMAN-encoded graphs from string.

	Parameters:

	
	string – a string containing graph data

	model – the model used for interpreting the graph

	Returns:

	a list of Graph objects

	
penman.load(source, model=None, encoding=None)

	Deserialize a list of PENMAN-encoded graphs from source.

	Parameters:

	
	source – a filename or file-like object to read from

	model – the model used for interpreting the graph

	Returns:

	a list of Graph objects

	
penman.dumps(graphs, model=None, indent=-1, compact=False)

	Serialize each graph in graphs to the PENMAN format.

	Parameters:

	
	graphs – an iterable of Graph objects

	model – the model used for interpreting the graph

	indent – how to indent formatted strings

	compact – if True, put initial attributes on the first line

	Returns:

	the string of serialized graphs

	
penman.dump(graphs, file, model=None, indent=-1, compact=False, encoding=None)

	Serialize each graph in graphs to PENMAN and write to file.

	Parameters:

	
	graphs – an iterable of Graph objects

	file – a filename or file-like object to write to

	model – the model used for interpreting the graph

	indent – how to indent formatted strings

	compact – if True, put initial attributes on the first line

Triple Conjunctions

	
penman.parse_triples(s)

	Parse a triple conjunction from s.

Example

>>> import penman
>>> for triple in penman.parse_triples('''
... instance(b, bark) ^
... ARG0(b, d) ^
... instance(d, dog)'''):
... print(triple)
('b', ':instance', 'bark')
('b', ':ARG0', 'd')
('d', ':instance', 'dog')

	
penman.format_triples(triples, indent=True)

	Return the formatted triple conjunction of triples.

	Parameters:

	
	triples – an iterable of triples

	indent – how to indent formatted strings

	Returns:

	the serialized triple conjunction of triples

Example

>>> import penman
>>> g = penman.decode('(b / bark-01 :ARG0 (d / dog))')
>>> print(penman.format_triples(g.triples))
instance(b, bark-01) ^
ARG0(b, d) ^
instance(d, dog)

Exceptions

	
exception penman.PenmanError

	Alias of penman.exceptions.PenmanError.

	
exception penman.DecodeError

	Alias of penman.exceptions.DecodeError.

Submodules

	penman.codec – Codec class for reading and writing PENMAN data

	penman.constant – For working with constant values

	penman.epigraph – Base classes for epigraphical markers

	penman.exceptions – Exception classes

	penman.graph – Classes for pure graphs

	penman.layout – Conversion between trees and graphs

	penman.model – Class for defining semantic models

	penman.models – Pre-defined models

	penman.surface – For working with surface alignments

	penman.transform – Graph and tree transformation functions

	penman.tree – Classes for trees

penman.codec

Serialization of PENMAN graphs.

	
class penman.codec.PENMANCodec(model=None)

	An encoder/decoder for PENMAN-serialized graphs.

	
decode(s)

	Deserialize PENMAN-notation string s into its Graph object.

	Parameters:

	s – a string containing a single PENMAN-serialized graph

	Returns:

	The Graph object described by s.

Example

>>> from penman.codec import PENMANCodec
>>> codec = PENMANCodec()
>>> codec.decode('(b / bark-01 :ARG0 (d / dog))')
<Graph object (top=b) at ...>

	
iterdecode(lines)

	Yield graphs parsed from lines.

	Parameters:

	lines – a string or open file with PENMAN-serialized graphs

	Returns:

	The Graph objects described in
lines.

	
parse(s)

	Parse PENMAN-notation string s into its tree structure.

	Parameters:

	s – a string containing a single PENMAN-serialized graph

	Returns:

	The tree structure described by s.

Example

>>> from penman.codec import PENMANCodec
>>> codec = PENMANCodec()
>>> codec.parse('(b / bark-01 :ARG0 (d / dog))') # noqa
Tree(('b', [('/', 'bark-01'), (':ARG0', ('d', [('/', 'dog')]))]))

	
iterparse(lines)

	Yield trees parsed from lines.

	Parameters:

	lines – a string or open file with PENMAN-serialized graphs

	Returns:

	The Tree object described in
lines.

	
parse_triples(s)

	Parse a triple conjunction from s.

	
encode(g, top=None, indent=-1, compact=False)

	Serialize the graph g into PENMAN notation.

	Parameters:

	
	g – the Graph object

	top – if given, the node to use as the top in serialization

	indent – how to indent formatted strings

	compact – if True, put initial attributes on the first line

	Returns:

	the PENMAN-serialized string of the Graph g

Example

>>> from penman.graph import Graph
>>> from penman.codec import PENMANCodec
>>> codec = PENMANCodec()
>>> codec.encode(Graph([('h', 'instance', 'hi')]))
'(h / hi)'

	
format(tree, indent=-1, compact=False)

	Format tree into a PENMAN string.

	
format_triples(triples, indent=True)

	Return the formatted triple conjunction of triples.

	Parameters:

	
	triples – an iterable of triples

	indent – how to indent formatted strings

	Returns:

	the serialized triple conjunction of triples

Example

>>> from penman.codec import PENMANCodec
>>> codec = PENMANCodec()
>>> codec.format_triples([('a', ':instance', 'alpha'),
... ('a', ':ARG0', 'b'),
... ('b', ':instance', 'beta')])
...
'instance(a, alpha) ^\nARG0(a, b) ^\ninstance(b, beta)'

penman.constant

Functions for working with constant values.

When a PENMAN string is parsed to a tree or a graph, constant values
are left as strings or, if the value is missing, as None. Penman
nevertheless recognizes four datatypes commonly used in PENMAN data:
integers, floats, strings, and symbols. A fifth type, called a “null”
value, is used when an attribute is missing its target, but aside from
robustness measures it is not a supported datatype.

Enumerated Datatypes

	
penman.constant.SYMBOL = Type.SYMBOL

	Symbol constants (e.g., (... :polarity -))

	
penman.constant.STRING = Type.STRING

	String constants (e.g., (... :op1 "Kim"))

	
penman.constant.INTEGER = Type.INTEGER

	Integer constants (e.g., (... :value 12))

	
penman.constant.FLOAT = Type.FLOAT

	Float constants (e.g., (... :value 1.2))

	
penman.constant.NULL = Type.NULL

	Empty values (e.g., (... :ARG1))

Module Functions

	
penman.constant.type(constant_string)

	Return the type of constant encoded by constant_string.

Examples

>>> from penman import constant
>>> constant.type('-')
<Type.SYMBOL: 'Symbol'>
>>> constant.type('"foo"')
<Type.STRING: 'String'>
>>> constant.type('1')
<Type.INTEGER: 'Integer'>
>>> constant.type('1.2')
<Type.FLOAT: 'Float'>
>>> constant.type('')
<Type.NULL: 'Null'>

	
penman.constant.evaluate(constant_string)

	Evaluate and return constant_string.

If constant_string is None or an empty symbol (''), this
function returns None, while an empty string constant
('""') returns an empty str [https://docs.python.org/3/library/stdtypes.html#str] object
(''). Otherwise, symbols are returned unchanged while strings
get quotes removed and escape sequences are unescaped. Note that
this means it is impossible to recover the original type of
strings and symbols once they have been evaluated. For integer and
float constants, this function returns the equivalent Python
int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float] objects.

Examples

>>> from penman import constant
>>> constant.evaluate('-')
'-'
>>> constant.evaluate('"foo"')
'foo'
>>> constant.evaluate('1')
1
>>> constant.evaluate('1.2')
1.2
>>> constant.evaluate('') is None
True

	
penman.constant.quote(constant)

	Return constant as a quoted string.

If constant is None, this function returns an empty string
constant ('""'). All other types are cast to a string and
quoted.

Examples

>>> from penman import constant
>>> constant.quote(None)
'""'
>>> constant.quote('')
'""'
>>> constant.quote('foo')
'"foo"'
>>> constant.quote('"foo"')
'"\\"foo\\""'
>>> constant.quote(1)
'"1"'
>>> constant.quote(1.5)
'"1.5"'

penman.epigraph

Base classes for epigraphical markers.

	
class penman.epigraph.Epidatum

	
	
mode = 0

	The mode attribute specifies what the Epidatum annotates:

	mode=0 – unspecified

	mode=1 – role epidata

	mode=2 – target epidata

penman.exceptions

	
exception penman.exceptions.PenmanError

	Base class for errors in the Penman package.

	
exception penman.exceptions.ConstantError

	Bases: PenmanError

Raised when working with invalid constant values.

	
exception penman.exceptions.GraphError

	Bases: PenmanError

Raised on invalid graph structures or operations.

	
exception penman.exceptions.LayoutError

	Bases: PenmanError

Raised on invalid graph layouts.

	
exception penman.exceptions.DecodeError(message=None, filename=None, lineno=None, offset=None, text=None)

	Bases: PenmanError

Raised on PENMAN syntax errors.

	
exception penman.exceptions.SurfaceError

	Bases: PenmanError

Raised on invalid surface information.

	
exception penman.exceptions.ModelError

	Bases: PenmanError

Raised when a graph violates model constraints.

penman.graph

Data structures for Penman graphs and triples.

	
class penman.graph.Graph(triples=None, top=None, epidata=None, metadata=None)

	A basic class for modeling a rooted, directed acyclic graph.

A Graph is defined by a list of triples, which can be divided into
two parts: a list of graph edges where both the source and target
are variables (node identifiers), and a list of node attributes
where only the source is a variable and the target is a
constant. The raw triples are available via the triples
attribute, while the instances(), edges() and
attributes() methods return only those that are concept
relations, relations between nodes, or relations between a node
and a constant, respectively.

	Parameters:

	
	triples – an iterable of triples (Triple or 3-tuples)

	top – the variable of the top node; if unspecified, the source
of the first triple is used

	epidata – a mapping of triples to epigraphical markers

	metadata – a mapping of metadata types to descriptions

Example

>>> from penman.graph import Graph
>>> Graph([('b', ':instance', 'bark-01'),
... ('d', ':instance', 'dog'),
... ('b', ':ARG0', 'd')])
<Graph object (top=b) at ...>

	
top

	The top variable.

	
triples

	The list of triples that make up the graph.

	
epidata

	Epigraphical data that describe how a graph is to be
expressed when serialized.

	
metadata

	Metadata for the graph.

	
instances()

	Return instances (concept triples).

	
edges(source=None, role=None, target=None)

	Return edges filtered by their source, role, or target.

Edges don’t include terminal triples (concepts or attributes).

	
attributes(source=None, role=None, target=None)

	Return attributes filtered by their source, role, or target.

Attributes don’t include concept triples or those where the
target is a nonterminal.

	
variables()

	Return the set of variables (nonterminal node identifiers).

	
reentrancies()

	Return a mapping of variables to their re-entrancy count.

A re-entrancy is when more than one edge selects a node as its
target. These graphs are rooted, so the top node always has an
implicit entrancy. Only nodes with re-entrancies are reported,
and the count is only for the entrant edges beyond the first.
Also note that these counts are for the interpreted graph, not
for the linearized form, so inverted edges are always
re-entrant.

	
class penman.graph.Triple(source, role, target)

	A relation between nodes or between a node and an constant.

	Parameters:

	
	source – the source variable of the triple

	role – the edge label between the source and target

	target – the target variable or constant

	
source

	The source variable of the triple.

	
role

	The edge label between the source and target.

	
target

	The target variable or constant.

	
class penman.graph.Instance(source, role, target)

	Bases: Triple

A relation indicating the concept of a node.

	
class penman.graph.Edge(source, role, target)

	Bases: Triple

A relation between nodes.

	
class penman.graph.Attribute(source, role, target)

	Bases: Triple

A relation between a node and a constant.

penman.layout

Interpreting trees to graphs and configuring graphs to trees.

In order to serialize graphs into the PENMAN format, a tree-like
layout of the graph must be decided. Deciding a layout includes
choosing the order of the edges from a node and the paths to get to a
node definition (the position in the tree where a node’s concept and
edges are specified). For instance, the following graphs for “The dog
barked loudly” have different edge orders on the b node:

(b / bark-01 (b / bark-01
 :ARG0 (d / dog) :mod (l / loud)
 :mod (l / loud)) :ARG0 (d / dog))

With re-entrancies, there are choices about which location of a
re-entrant node gets the full definition with its concept (node
label), etc. For instance, the following graphs for “The dog tried to
bark” have different locations for the definition of the d node:

(t / try-01 (t / try-01
 :ARG0 (d / dog) :ARG0 d
 :ARG1 (b / bark-01 :ARG1 (b / bark-01
 :ARG0 d)) :ARG0 (d / dog))

With inverted edges, there are even more possibilities, such as:

(t / try-01 (t / try-01
 :ARG0 (d / dog :ARG1 (b / bark-01
 :ARG0-of b) :ARG0 (d / dog
 :ARG1 (b / bark-01)) :ARG0-of t)))

This module introduces two epigraphical markers so that a pure graph
parsed from PENMAN can retain information about its tree layout
without altering its graph properties. The first marker type is
Push, which is put on a triple to indicate that the triple
introduces a new node context, while the sentinel POP
indicates that a triple is at the end of one or more node contexts.
These markers only work if the triples in the graph’s data are
ordered. For instance, one of the graphs above (repeated here) has the
following data:

PENMAN Graph Epigraph
(t / try-01 [('t', ':instance', 'try-01'), :
 :ARG0 (d / dog) ('t', ':ARG0', 'd'), : Push('d')
 :ARG1 (b / bark-01 ('d', ':instance', 'dog'), : POP
 :ARG0 d)) ('t', ':ARG1', 'b'), : Push('b')
 ('b', ':instance', 'bark-01'), :
 ('b', ':ARG0', 'd')] : POP

Epigraphical Markers

	
class penman.layout.LayoutMarker

	Bases: Epidatum

Epigraph marker for layout choices.

	
class penman.layout.Push(variable)

	Bases: LayoutMarker

Epigraph marker to indicate a new node context.

	
class penman.layout.Pop

	Bases: LayoutMarker

Epigraph marker to indicate the end of a node context.

	
penman.layout.POP = POP

	A singleton instance of Pop.

Using the POP singleton can help reduce memory usage and
processing time when working with many graphs, but it should
not be checked for object identity, such as if x is POP,
when working with multiple processes because each process gets its
own instance. Instead, use a type check such as isinstance(x,
Pop).

Tree Functions

	
penman.layout.interpret(t, model=None)

	Interpret tree t as a graph using model.

Tree interpretation is the process of transforming the nodes and
edges of a tree into a directed graph. A semantic model determines
which edges are inverted and how to deinvert them. If model is
not provided, the default model will be used.

	Parameters:

	
	t – the Tree to interpret

	model – the Model used to interpret t

	Returns:

	The interpreted Graph.

Example

>>> from penman.tree import Tree
>>> from penman import layout
>>> t = Tree(
... ('b', [
... ('/', 'bark-01'),
... ('ARG0', ('d', [
... ('/', 'dog')]))]))
>>> g = layout.interpret(t)
>>> for triple in g.triples:
... print(triple)
...
('b', ':instance', 'bark-01')
('b', ':ARG0', 'd')
('d', ':instance', 'dog')

	
penman.layout.rearrange(t, key=None, attributes_first=False)

	Sort the branches at each node in tree t according to key.

Each node in a tree contains a list of branches. This function
sorts those lists in-place using the key function, which accepts
a role and returns some sortable criterion.

If the attributes_first argument is True, attribute branches
are appear before any edges.

Instance branches (/) always appear before any other branches.

Example

>>> from penman import layout
>>> from penman.model import Model
>>> from penman.codec import PENMANCodec
>>> c = PENMANCodec()
>>> t = c.parse(
... '(s / see-01'
... ' :ARG1 (c / cat)'
... ' :ARG0 (d / dog))')
>>> layout.rearrange(t, key=Model().canonical_order)
>>> print(c.format(t))
(s / see-01
 :ARG0 (d / dog)
 :ARG1 (c / cat))

Graph Functions

	
penman.layout.configure(g, top=None, model=None)

	Create a tree from a graph by making as few decisions as possible.

A graph interpreted from a valid tree using interpret() will
contain epigraphical markers that describe how the triples of a
graph are to be expressed in a tree, and thus configuring this
tree requires only a single pass through the list of triples. If
the markers are missing or out of order, or if the graph has been
modified, then the configuration process will have to make
decisions about where to insert tree branches. These decisions are
deterministic, but may result in a tree different than the one
expected.

	Parameters:

	
	g – the Graph to configure

	top – the variable to use as the top of the graph; if None,
the top of g will be used

	model – the Model used to configure the
tree

	Returns:

	The configured Tree.

Example

>>> from penman.graph import Graph
>>> from penman import layout
>>> g = Graph([('b', ':instance', 'bark-01'),
... ('b', ':ARG0', 'd'),
... ('d', ':instance', 'dog')])
>>> t = layout.configure(g)
>>> print(t)
Tree(
 ('b', [
 ('/', 'bark-01'),
 (':ARG0', ('d', [
 ('/', 'dog')]))]))

	
penman.layout.reconfigure(g, top=None, model=None, key=None)

	Create a tree from a graph after any discarding layout markers.

If key is provided, triples are sorted according to the key.

Diagnostic Functions

	
penman.layout.get_pushed_variable(g, triple)

	Return the variable pushed by triple, if any, otherwise None.

Example

>>> from penman import decode
>>> from penman.layout import get_pushed_variable
>>> g = decode('(a / alpha :ARG0 (b / beta))')
>>> get_pushed_variable(g, ('a', ':instance', 'alpha')) # None
>>> get_pushed_variable(g, ('a', ':ARG0', 'b'))
'b'

	
penman.layout.appears_inverted(g, triple)

	Return True if triple appears inverted in serialization.

More specifically, this function returns True if triple has
a Push epigraphical marker in graph g whose associated
variable is the source variable of triple. This should be
accurate when testing a triple in a graph interpreted using
interpret() (including PENMANCodec.decode, etc.), but it does not
guarantee that a new serialization of g will express triple as
inverted as it can change if the graph or its epigraphical markers
are modified, if a new top is chosen, etc.

	Parameters:

	
	g – a Graph containing triple

	triple – the triple that does or does not appear inverted

	Returns:

	True if triple appears inverted in graph g.

	
penman.layout.node_contexts(g)

	Return the list of node contexts corresponding to triples in g.

If a node context is unknown, the value None is substituted.

Example

>>> from penman import decode, layout
>>> g = decode('''
... (a / alpha
... :attr val
... :ARG0 (b / beta :ARG0 (g / gamma))
... :ARG0-of g)''')
>>> for ctx, trp in zip(layout.node_contexts(g), g.triples):
... print(ctx, ':', trp)
...
a : ('a', ':instance', 'alpha')
a : ('a', ':attr', 'val')
a : ('a', ':ARG0', 'b')
b : ('b', ':instance', 'beta')
b : ('b', ':ARG0', 'g')
g : ('g', ':instance', 'gamma')
a : ('g', ':ARG0', 'a')

penman.model

Semantic models for interpreting graphs.

	
class penman.model.Model(top_variable='top', top_role=':TOP', concept_role=':instance', roles=None, normalizations=None, reifications=None)

	A semantic model for Penman graphs.

The model defines things like valid roles and transformations.

	Parameters:

	
	top_variable – the variable of the graph’s top

	top_role – the role linking the graph’s top to the top node

	concept_role – the role associated with node concepts

	roles – a mapping of roles to associated data

	normalizations – a mapping of roles to normalized roles

	reifications – a list of 4-tuples used to define reifications

	
classmethod from_dict(d)

	Instantiate a model from a dictionary.

	
has_role(role)

	Return True if role is defined by the model.

If role is not in the model but a single deinversion of
role is in the model, then True is returned. Otherwise
False is returned, even if something like
canonicalize_role() could return a valid role.

	
errors(graph)

	Return a description of model errors detected in graph.

The description is a dictionary mapping a context to a list of
errors. A context is a triple if the error is relevant for the
triple, or None for general graph errors.

Example

>>> from penman.models.amr import model
>>> from penman.graph import Graph
>>> g = Graph([('a', ':instance', 'alpha'),
... ('a', ':foo', 'bar'),
... ('b', ':instance', 'beta')])
>>> for context, errors in model.errors(g).items():
... print(context, errors)
...
('a', ':foo', 'bar') ['invalid role']
('b', ':instance', 'beta') ['unreachable']

	
is_role_inverted(role)

	Return True if role is inverted.

	
invert_role(role)

	Invert role.

	
invert(triple)

	Invert triple.

This will invert or deinvert a triple regardless of its
current state. deinvert() will deinvert a triple only if
it is already inverted. Unlike canonicalize(), this will
not perform multiple inversions or replace the role with a
normalized form.

	
deinvert(triple)

	De-invert triple if it is inverted.

Unlike invert(), this only inverts a triple if the model
considers it to be already inverted, otherwise it is left
alone. Unlike canonicalize(), this will not normalize
multiple inversions or replace the role with a normalized
form.

	
canonicalize_role(role)

	Canonicalize role.

Role canonicalization will do the following:

	Ensure the role starts with ‘:’

	Normalize multiple inversions (e.g., ARG0-of-of becomes
ARG0), but it does not change the direction of the role

	Replace the resulting role with a normalized form if one is
defined in the model

	
canonicalize(triple)

	Canonicalize triple.

See canonicalize_role() for a description of how the
role is canonicalized. Unlike invert(), this does not
swap the source and target of triple.

	
is_role_reifiable(role)

	Return True if role can be reified.

	
reify(triple, variables=None)

	Return the three triples that reify triple.

Note that, unless variables is given, the node variable
for the reified node is not necessarily valid for the target
graph. When incorporating the reified triples, this variable
should then be replaced.

If the role of triple does not have a defined reification, a
ModelError is raised.

	Parameters:

	
	triple – the triple to reify

	variables – a set of variables that should not be used for
the reified node’s variable

	Returns:

	The 3-tuple of triples that reify triple.

	
is_concept_dereifiable(concept)

	Return True if concept can be dereified.

	
dereify(instance_triple, source_triple, target_triple)

	Return the triple that dereifies the three argument triples.

If the target of instance_triple does not have a defined
dereification, or if the roles of source_triple and
target_triple do not match those for the dereification of
the concept, a ModelError is
raised. A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised if instance_triple is
not an instance triple or any triple does not have the same
source variable as the others.

	Parameters:

	
	instance_triple – the triple containing the node’s concept

	source_triple – the source triple from the node

	target_triple – the target triple from the node

	Returns:

	The triple that dereifies the three argument triples.

	
original_order(role)

	Role sorting key that does not change the order.

	
alphanumeric_order(role)

	Role sorting key for alphanumeric order.

	
canonical_order(role)

	Role sorting key that finds a canonical order.

	
random_order(role)

	Role sorting key that randomizes the order.

penman.models

This sub-package contains specified instances of the
penman.model.Model class.

Available Models

	penman.models.amr

	penman.models.noop

penman.models.amr

AMR semantic model definition.

	
penman.models.amr.model = <penman.model.Model object>

	The AMR model is an instance of Model using
the roles, normalizations, and reifications defined in this module.

Roles

{
 ":ARG[0-9]": {"type": "frame"},
 ":accompanier": {"type": "general"},
 ":age": {"type": "general"},
 ":beneficiary": {"type": "general"},
 ":cause": {"type": "general", "shortcut": true},
 ":concession": {"type": "general"},
 ":condition": {"type": "general"},
 ":consist-of": {"type": "general"},
 ":cost": {"type": "general", "shortcut": true},
 ":degree": {"type": "general"},
 ":destination": {"type": "general"},
 ":direction": {"type": "general"},
 ":domain": {"type": "general"},
 ":duration": {"type": "general"},
 ":employed-by": {"type": "general", "shortcut": true},
 ":example": {"type": "general"},
 ":extent": {"type": "general"},
 ":frequency": {"type": "general"},
 ":instrument": {"type": "general"},
 ":li": {"type": "general"},
 ":location": {"type": "general"},
 ":manner": {"type": "general"},
 ":meaning": {"type": "general", "shortcut": true},
 ":medium": {"type": "general"},
 ":mod": {"type": "general"},
 ":mode": {"type": "general"},
 ":name": {"type": "general"},
 ":ord": {"type": "general"},
 ":part": {"type": "general"},
 ":path": {"type": "general"},
 ":polarity": {"type": "general"},
 ":polite": {"type": "general"},
 ":poss": {"type": "general"},
 ":purpose": {"type": "general"},
 ":role": {"type": "general", "shortcut": true},
 ":source": {"type": "general"},
 ":subevent": {"type": "general"},
 ":subset": {"type": "general", "shortcut": true},
 ":superset": {"type": "general", "shortcut": true},
 ":time": {"type": "general"},
 ":topic": {"type": "general"},
 ":value": {"type": "general"},
 ":quant": {"type": "quantity"},
 ":unit": {"type": "quantity"},
 ":scale": {"type": "quantity"},
 ":day": {"type": "date"},
 ":month": {"type": "date"},
 ":year": {"type": "date"},
 ":weekday": {"type": "date"},
 ":timezone": {"type": "date"},
 ":quarter": {"type": "date"},
 ":dayperiod": {"type": "date"},
 ":season": {"type": "date"},
 ":year2": {"type": "date"},
 ":decade": {"type": "date"},
 ":century": {"type": "date"},
 ":calendar": {"type": "date"},
 ":era": {"type": "date"},
 ":op[0-9]+": {"type": "op"},
 ":snt[0-9]+": {"type": "snt"},
 ":prep-against": {"type": "preposition"},
 ":prep-along-with": {"type": "preposition"},
 ":prep-amid": {"type": "preposition"},
 ":prep-among": {"type": "preposition"},
 ":prep-as": {"type": "preposition"},
 ":prep-at": {"type": "preposition"},
 ":prep-by": {"type": "preposition"},
 ":prep-for": {"type": "preposition"},
 ":prep-from": {"type": "preposition"},
 ":prep-in": {"type": "preposition"},
 ":prep-in-addition-to": {"type": "preposition"},
 ":prep-into": {"type": "preposition"},
 ":prep-on": {"type": "preposition"},
 ":prep-on-behalf-of": {"type": "preposition"},
 ":prep-out-of": {"type": "preposition"},
 ":prep-to": {"type": "preposition"},
 ":prep-toward": {"type": "preposition"},
 ":prep-under": {"type": "preposition"},
 ":prep-with": {"type": "preposition"},
 ":prep-without": {"type": "preposition"},
 ":conj-as-if": {"type": "conjunction"}
 ":wiki": {"type": "wiki"},
 ":range": {"type": "ordinal"},
}

Role Normalizations

{
 ":mod-of": ":domain",
 ":domain-of": ":mod"
}

Reifications

[
 [":accompanier", "accompany-01", ":ARG0", ":ARG1"],
 [":age", "age-01", ":ARG1", ":ARG2"],
 [":beneficiary", "benefit-01", ":ARG0", ":ARG1"],
 [":beneficiary", "receive-01", ":ARG2", ":ARG0"],
 [":cause", "cause-01", ":ARG1", ":ARG0"],
 [":concession", "have-concession-91", ":ARG1", ":ARG2"],
 [":condition", "have-condition-91", ":ARG1", ":ARG2"],
 [":cost", "cost-01", ":ARG1", ":ARG2"],
 [":degree", "have-degree-92", ":ARG1", ":ARG2"],
 [":destination", "be-destined-for-91", ":ARG1", ":ARG2"],
 [":duration", "last-01", ":ARG1", ":ARG2"],
 [":employed-by", "have-org-role-91", ":ARG0", ":ARG1"],
 [":example", "exemplify-01", ":ARG0", ":ARG1"],
 [":extent", "have-extent-91", ":ARG1", ":ARG2"],
 [":frequency", "have-frequency-91", ":ARG1", ":ARG2"],
 [":instrument", "have-instrument-91", ":ARG1", ":ARG2"],
 [":li", "have-li-91", ":ARG1", ":ARG2"],
 [":location", "be-located-at-91", ":ARG1", ":ARG2"],
 [":manner", "have-manner-91", ":ARG1", ":ARG2"],
 [":meaning", "mean-01", ":ARG1", ":ARG2"],
 [":mod", "have-mod-91", ":ARG1", ":ARG2"],
 [":name", "have-name-91", ":ARG1", ":ARG2"],
 [":ord", "have-ord-91", ":ARG1", ":ARG2"],
 [":part", "have-part-91", ":ARG1", ":ARG2"],
 [":polarity", "have-polarity-91", ":ARG1", ":ARG2"],
 [":poss", "own-01", ":ARG0", ":ARG1"],
 [":poss", "have-03", ":ARG0", ":ARG1"],
 [":purpose", "have-purpose-91", ":ARG1", ":ARG2"],
 [":role", "have-org-role-91", ":ARG0", ":ARG2"],
 [":source", "be-from-91", ":ARG1", ":ARG2"],
 [":subevent", "have-subevent-91", ":ARG1", ":ARG2"],
 [":subset", "include-91", ":ARG2", ":ARG1"],
 [":superset", "include-91", ":ARG1", ":ARG2"],
 [":time", "be-temporally-at-91", ":ARG1", ":ARG2"],
 [":topic", "concern-02", ":ARG0", ":ARG1"],
 [":value", "have-value-91", ":ARG1", ":ARG2"],
 [":quant", "have-quant-91", ":ARG1", ":ARG2"]
]

penman.models.noop

No-op semantic model definition.

	
class penman.models.noop.NoOpModel(top_variable='top', top_role=':TOP', concept_role=':instance', roles=None, normalizations=None, reifications=None)

	Bases: Model

A no-operation model that mostly leaves things alone.

This model is like the default Model except
that NoOpModel.deinvert() always returns the original
triple, even if it was inverted.

	
deinvert(triple)

	Return triple (does not deinvert).

	
penman.models.noop.model

	An instance of the NoOpModel class.

penman.surface

Surface strings, tokens, and alignments.

Epigraphical Markers

	
class penman.surface.AlignmentMarker(indices, prefix=None)

	Bases: Epidatum

	
classmethod from_string(s)

	Instantiate the alignment marker from its string s.

Examples

>>> from penman import surface
>>> surface.Alignment.from_string('1')
Alignment((1,))
>>> surface.RoleAlignment.from_string('e.2,3')
RoleAlignment((2, 3), prefix='e.')

	
class penman.surface.Alignment(indices, prefix=None)

	Bases: AlignmentMarker

	
class penman.surface.RoleAlignment(indices, prefix=None)

	Bases: AlignmentMarker

Module Functions

	
penman.surface.alignments(g)

	Return a mapping of triples to alignments in graph g.

	Parameters:

	g – a Graph containing alignment data

	Returns:

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] mapping Triple objects
to their corresponding Alignment objects, if any.

Example

>>> from penman import decode
>>> from penman import surface
>>> g = decode(
... '(c / chase-01~4'
... ' :ARG0~5 (d / dog~7)'
... ' :ARG0~3 (c / cat~2))')
>>> surface.alignments(g)
{('c', ':instance', 'chase-01'): Alignment((4,)),
 ('d', ':instance', 'dog'): Alignment((7,)),
 ('c', ':instance', 'cat'): Alignment((2,))}

	
penman.surface.role_alignments(g)

	Return a mapping of triples to role alignments in graph g.

	Parameters:

	
	g – a Graph containing role alignment

	data –

	Returns:

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] mapping Triple objects
to their corresponding RoleAlignment objects, if any.

Example

>>> from penman import decode
>>> from penman import surface
>>> g = decode(
... '(c / chase-01~4'
... ' :ARG0~5 (d / dog~7)'
... ' :ARG0~3 (c / cat~2))')
>>> surface.role_alignments(g)
{('c', ':ARG0', 'd'): RoleAlignment((5,)),
 ('c', ':ARG0', 'c'): RoleAlignment((3,))}

penman.transform

Tree and graph transformations.

See also

The transformation functions in this module alter the content of
the graph. Other functions may change the shape or form of the
graph without altering its content, such as:

	penman.layout.rearrange()

	penman.layout.reconfigure()

	penman.tree.Tree.reset_variables()

	
penman.transform.canonicalize_roles(t, model)

	Normalize roles in t so they are canonical according to model.

This is a tree transformation instead of a graph transformation
because the orientation of the pure graph’s triples is not decided
until the graph is configured into a tree.

	Parameters:

	
	t – a Tree object

	model – a model defining role normalizations

	Returns:

	A new Tree object with canonicalized
roles.

Example

>>> from penman.codec import PENMANCodec
>>> from penman.models.amr import model
>>> from penman.transform import canonicalize_roles
>>> codec = PENMANCodec()
>>> t = codec.parse('(c / chapter :domain-of 7)')
>>> t = canonicalize_roles(t, model)
>>> print(codec.format(t))
(c / chapter
 :mod 7)

	
penman.transform.reify_edges(g, model)

	Reify all edges in g that have reifications in model.

	Parameters:

	
	g – a Graph object

	model – a model defining reifications

	Returns:

	A new Graph object with reified edges.

Example

>>> from penman.codec import PENMANCodec
>>> from penman.models.amr import model
>>> from penman.transform import reify_edges
>>> codec = PENMANCodec(model=model)
>>> g = codec.decode('(c / chapter :mod 7)')
>>> g = reify_edges(g, model)
>>> print(codec.encode(g))
(c / chapter
 :ARG1-of (_ / have-mod-91
 :ARG2 7))

	
penman.transform.dereify_edges(g, model)

	Dereify edges in g that have reifications in model.

	Parameters:

	g – a Graph object

	Returns:

	A new Graph object with dereified
edges.

Example

>>> from penman.codec import PENMANCodec
>>> from penman.models.amr import model
>>> from penman.transform import dereify_edges
>>> codec = PENMANCodec(model=model)
>>> g = codec.decode(
... '(c / chapter'
... ' :ARG1-of (_ / have-mod-91'
... ' :ARG2 7))')
>>> g = dereify_edges(g, model)
>>> print(codec.encode(g))
(c / chapter
 :mod 7)

	
penman.transform.reify_attributes(g)

	Reify all attributes in g.

	Parameters:

	g – a Graph object

	Returns:

	A new Graph object with reified
attributes.

Example

>>> from penman.codec import PENMANCodec
>>> from penman.models.amr import model
>>> from penman.transform import reify_attributes
>>> codec = PENMANCodec(model=model)
>>> g = codec.decode('(c / chapter :mod 7)')
>>> g = reify_attributes(g)
>>> print(codec.encode(g))
(c / chapter
 :mod (_ / 7))

	
penman.transform.indicate_branches(g, model)

	Insert TOP triples in g indicating the tree structure.

Note

This depends on g containing the epigraphical layout markers
from parsing; it will not work with programmatically
constructed Graph objects or those whose epigraphical data
were removed.

	Parameters:

	
	g – a Graph object

	model – a model defining the TOP role

	Returns:

	A new Graph object with TOP roles
indicating tree branches.

Example

>>> from penman.codec import PENMANCodec
>>> from penman.models.amr import model
>>> from penman.transform import indicate_branches
>>> codec = PENMANCodec(model=model)
>>> g = codec.decode('''
... (w / want-01
... :ARG0 (b / boy)
... :ARG1 (g / go-02
... :ARG0 b))''')
>>> g = indicate_branches(g, model)
>>> print(codec.encode(g))
(w / want-01
 :TOP b
 :ARG0 (b / boy)
 :TOP g
 :ARG1 (g / go-02
 :ARG0 b))

penman.tree

Definitions of tree structures.

	
class penman.tree.Tree(node, metadata=None)

	A tree structure.

A tree is essentially a node that contains other nodes, but this
Tree class is useful to contain any metadata and to provide
tree-based methods.

	
nodes()

	Return the nodes in the tree as a flat list.

	
reset_variables(fmt='{prefix}{j}')

	Recreate node variables formatted using fmt.

The fmt string can be formatted with the following values:

	prefix: first alphabetic character in the node’s concept

	i: 0-based index of the current occurrence of the prefix

	j: 1-based index starting from the second occurrence

	
walk()

	Iterate over branches in the tree.

This function yields pairs of (path, branch) where each
path is a tuple of 0-based indices of branches to get to
branch. For example, the path (2, 0) is the concept branch
(‘/’, ‘bark-01’) in the tree for the following PENMAN
string, traversing first to the third (index 2) branch of the
top node, then to the first (index 0) branch of that node:

(t / try-01
 :ARG0 (d / dog)
 :ARG1 (b / bark-01
 :ARG0 d))

The (path, branch) pairs are yielded in depth-first order
of the tree traversal.

	
penman.tree.is_atomic(x)

	Return True if x is a valid atomic value.

Examples

>>> from penman.tree import is_atomic
>>> is_atomic('a')
True
>>> is_atomic(None)
True
>>> is_atomic(3.14)
True
>>> is_atomic(('a', [('/', 'alpha')]))
False

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 penman	

 	
 	
 penman.codec	

 	
 	
 penman.constant	

 	
 	
 penman.epigraph	

 	
 	
 penman.exceptions	

 	
 	
 penman.graph	

 	
 	
 penman.layout	

 	
 	
 penman.model	

 	
 	
 penman.models	

 	
 	
 penman.models.amr	

 	
 	
 penman.models.noop	

 	
 	
 penman.surface	

 	
 	
 penman.transform	

 	
 	
 penman.tree	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | W

A

 	
 	Alignment (class in penman.surface)

 	AlignmentMarker (class in penman.surface)

 	alignments() (in module penman.surface)

 	
 	alphanumeric_order() (penman.model.Model method)

 	appears_inverted() (in module penman.layout)

 	Attribute (class in penman.graph)

 	attributes() (penman.graph.Graph method)

C

 	
 	canonical_order() (penman.model.Model method)

 	canonicalize() (penman.model.Model method)

 	canonicalize_role() (penman.model.Model method)

 	
 	canonicalize_roles() (in module penman.transform)

 	configure() (in module penman)

 	(in module penman.layout)

 	ConstantError

D

 	
 	decode() (in module penman)

 	(penman.codec.PENMANCodec method)

 	DecodeError, [1]

 	deinvert() (penman.model.Model method)

 	(penman.models.noop.NoOpModel method)

 	
 	dereify() (penman.model.Model method)

 	dereify_edges() (in module penman.transform)

 	dump() (in module penman)

 	dumps() (in module penman)

E

 	
 	Edge (class in penman.graph)

 	edges() (penman.graph.Graph method)

 	encode() (in module penman)

 	(penman.codec.PENMANCodec method)

 	
 	epidata (penman.graph.Graph attribute)

 	Epidatum (class in penman.epigraph)

 	errors() (penman.model.Model method)

 	evaluate() (in module penman.constant)

F

 	
 	FLOAT (in module penman.constant)

 	format() (in module penman)

 	(penman.codec.PENMANCodec method)

 	
 	format_triples() (in module penman)

 	(penman.codec.PENMANCodec method)

 	from_dict() (penman.model.Model class method)

 	from_string() (penman.surface.AlignmentMarker class method)

G

 	
 	get_pushed_variable() (in module penman.layout)

 	Graph (class in penman)

 	(class in penman.graph)

 	
 	GraphError

H

 	
 	has_role() (penman.model.Model method)

I

 	
 	indicate_branches() (in module penman.transform)

 	Instance (class in penman.graph)

 	instances() (penman.graph.Graph method)

 	INTEGER (in module penman.constant)

 	interpret() (in module penman)

 	(in module penman.layout)

 	invert() (penman.model.Model method)

 	invert_role() (penman.model.Model method)

 	
 	is_atomic() (in module penman.tree)

 	is_concept_dereifiable() (penman.model.Model method)

 	is_role_inverted() (penman.model.Model method)

 	is_role_reifiable() (penman.model.Model method)

 	iterdecode() (in module penman)

 	(penman.codec.PENMANCodec method)

 	iterparse() (in module penman)

 	(penman.codec.PENMANCodec method)

L

 	
 	LayoutError

 	LayoutMarker (class in penman.layout)

 	
 	load() (in module penman)

 	loads() (in module penman)

M

 	
 	metadata (penman.graph.Graph attribute)

 	mode (penman.epigraph.Epidatum attribute)

 	Model (class in penman.model)

 	model (in module penman.models.amr)

 	(in module penman.models.noop)

 	ModelError

 	
 module

 	penman

 	penman.codec

 	penman.constant

 	penman.epigraph

 	penman.exceptions

 	penman.graph

 	penman.layout

 	penman.model

 	penman.models

 	penman.models.amr

 	penman.models.noop

 	penman.surface

 	penman.transform

 	penman.tree

N

 	
 	node_contexts() (in module penman.layout)

 	nodes() (penman.tree.Tree method)

 	
 	NoOpModel (class in penman.models.noop)

 	NULL (in module penman.constant)

O

 	
 	original_order() (penman.model.Model method)

P

 	
 	parse() (in module penman)

 	(penman.codec.PENMANCodec method)

 	parse_triples() (in module penman)

 	(penman.codec.PENMANCodec method)

 	
 penman

 	module

 	penman.__version__ (in module penman)

 	penman.__version_info__ (in module penman)

 	
 penman.codec

 	module

 	
 penman.constant

 	module

 	
 penman.epigraph

 	module

 	
 penman.exceptions

 	module

 	
 penman.graph

 	module

 	
 penman.layout

 	module

 	
 	
 penman.model

 	module

 	
 penman.models

 	module

 	
 penman.models.amr

 	module

 	
 penman.models.noop

 	module

 	
 penman.surface

 	module

 	
 penman.transform

 	module

 	
 penman.tree

 	module

 	PENMANCodec (class in penman)

 	(class in penman.codec)

 	PenmanError, [1]

 	Pop (class in penman.layout)

 	POP (in module penman.layout)

 	Push (class in penman.layout)

Q

 	
 	quote() (in module penman.constant)

R

 	
 	random_order() (penman.model.Model method)

 	rearrange() (in module penman.layout)

 	reconfigure() (in module penman.layout)

 	reentrancies() (penman.graph.Graph method)

 	reify() (penman.model.Model method)

 	
 	reify_attributes() (in module penman.transform)

 	reify_edges() (in module penman.transform)

 	reset_variables() (penman.tree.Tree method)

 	role (penman.graph.Triple attribute)

 	role_alignments() (in module penman.surface)

 	RoleAlignment (class in penman.surface)

S

 	
 	source (penman.graph.Triple attribute)

 	STRING (in module penman.constant)

 	
 	SurfaceError

 	SYMBOL (in module penman.constant)

T

 	
 	target (penman.graph.Triple attribute)

 	top (penman.graph.Graph attribute)

 	Tree (class in penman)

 	(class in penman.tree)

 	
 	Triple (class in penman)

 	(class in penman.graph)

 	triples (penman.graph.Graph attribute)

 	type() (in module penman.constant)

V

 	
 	variables() (penman.graph.Graph method)

W

 	
 	walk() (penman.tree.Tree method)

 _static/file.png

_static/minus.png

_static/plus.png

_images/representations.png
decode

parse

interpret

PENMAN

Tree

format

configure

(a / alpha
:ARGO (b / beta)
:ARGO-of (g / gamma

:ARG1 b))

encode

top

:ARGO-of

nav.xhtml

 Table of Contents

 		
 Welcome to Penman’s documentation!

 		
 Installation and Setup

 		
 Requirements

 		
 Installation

 		
 For Contributors

 		
 Using the penman Command

 		
 Command Usage

 		
 Reformatting

 		
 Default Formatting

 		
 Changing the Indentation

 		
 Compact Attributes

 		
 Single-Line Graphs

 		
 Specifying a Model

 		
 Checking for Model Compliance

 		
 Transforming Graphs

 		
 Relabeling Nodes

 		
 Rearranging Branches

 		
 Reconfiguring the Tree

 		
 Normalizations

 		
 Using Penman as a Python Library

 		
 PENMAN Notation

 		
 Graph Anatomy

 		
 Formal Grammar

 		
 Trees, Graphs, and Epigraphs

 		
 Notes on Serialization

 		
 Allowed Graphs

 		
 penman

 		
 Module Constants

 		
 penman.__version__

 		
 penman.__version_info__

 		
 Classes

 		
 Tree

 		
 Triple

 		
 Graph

 		
 PENMANCodec

 		
 Module Functions

 		
 Trees

 		
 Graphs

 		
 Corpus Files

 		
 Triple Conjunctions

 		
 Exceptions

 		
 PenmanError

 		
 DecodeError

 		
 Submodules

 		
 penman.codec

 		
 PENMANCodec

 		
 PENMANCodec.decode()

 		
 PENMANCodec.iterdecode()

 		
 PENMANCodec.parse()

 		
 PENMANCodec.iterparse()

 		
 PENMANCodec.parse_triples()

 		
 PENMANCodec.encode()

 		
 PENMANCodec.format()

 		
 PENMANCodec.format_triples()

 		
 penman.constant

 		
 Enumerated Datatypes

 		
 SYMBOL

 		
 STRING

 		
 INTEGER

 		
 FLOAT

 		
 NULL

 		
 Module Functions

 		
 type()

 		
 evaluate()

 		
 quote()

 		
 penman.epigraph

 		
 Epidatum

 		
 Epidatum.mode

 		
 penman.exceptions

 		
 PenmanError

 		
 ConstantError

 		
 GraphError

 		
 LayoutError

 		
 DecodeError

 		
 SurfaceError

 		
 ModelError

 		
 penman.graph

 		
 Graph

 		
 Graph.top

 		
 Graph.triples

 		
 Graph.epidata

 		
 Graph.metadata

 		
 Graph.instances()

 		
 Graph.edges()

 		
 Graph.attributes()

 		
 Graph.variables()

 		
 Graph.reentrancies()

 		
 Triple

 		
 Triple.source

 		
 Triple.role

 		
 Triple.target

 		
 Instance

 		
 Edge

 		
 Attribute

 		
 penman.layout

 		
 Epigraphical Markers

 		
 LayoutMarker

 		
 Push

 		
 Pop

 		
 POP

 		
 Tree Functions

 		
 interpret()

 		
 rearrange()

 		
 Graph Functions

 		
 configure()

 		
 reconfigure()

 		
 Diagnostic Functions

 		
 get_pushed_variable()

 		
 appears_inverted()

 		
 node_contexts()

 		
 penman.model

 		
 Model

 		
 Model.from_dict()

 		
 Model.has_role()

 		
 Model.errors()

 		
 Model.is_role_inverted()

 		
 Model.invert_role()

 		
 Model.invert()

 		
 Model.deinvert()

 		
 Model.canonicalize_role()

 		
 Model.canonicalize()

 		
 Model.is_role_reifiable()

 		
 Model.reify()

 		
 Model.is_concept_dereifiable()

 		
 Model.dereify()

 		
 Model.original_order()

 		
 Model.alphanumeric_order()

 		
 Model.canonical_order()

 		
 Model.random_order()

 		
 penman.models

 		
 Available Models

 		
 penman.models.amr

 		
 penman.models.noop

 		
 penman.surface

 		
 Epigraphical Markers

 		
 AlignmentMarker

 		
 Alignment

 		
 RoleAlignment

 		
 Module Functions

 		
 alignments()

 		
 role_alignments()

 		
 penman.transform

 		
 canonicalize_roles()

 		
 reify_edges()

 		
 dereify_edges()

 		
 reify_attributes()

 		
 indicate_branches()

 		
 penman.tree

 		
 Tree

 		
 Tree.nodes()

 		
 Tree.reset_variables()

 		
 Tree.walk()

 		
 is_atomic()

_static/representations.png
decode

parse

interpret

PENMAN

Tree

format

configure

(a / alpha
:ARGO (b / beta)
:ARGO-of (g / gamma

:ARG1 b))

encode

top

:ARGO-of

